scholarly journals Tri-trophic interactions of a predator-parasite-host assemblage in New Zealand

2021 ◽  
Author(s):  
◽  
Kirsty Yule

<p>Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved.  In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density-dependent competition as infrapopulation size had no effect on long-term larval growth.  Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. In Chapter 3, I investigate larvae host specificity in relation to host nutritional rewards (phloem turnover and phloem sugar content) and host defences (bark thickness and wood density). The number of species parasitized was not explained by tree abundance, nutritional rewards or wood density. However, the number of trees parasitised declined significantly with increasing bark thickness indicating host external defences are an important driver of host specificity.  Camouflage in animals has traditionally been considered an anti-predator adaptation. Yet the adaptive consequences of camouflage, i.e. increased survivability via predator avoidance, has rarely been tested. In Chapter 4, I show that larvae webbing is visually cryptic to predating kaka, yet did not protect larvae from attack. Instead, cryptic webbing aids larvae thermoregulation suggesting crypsis is non-adaptive. These results support an exciting newly emerging paradigm shift that indicates the evolution of camouflage in animals may be more to do with abiotic conditions than biotic signalling.  Males are often the “sicker sex”, experiencing higher pathogen and parasite loads than females. In Chapter 5, I construct the largest host-parasite database to date, spanning 70 animal and 22 plant families, from which I conduct a meta-analysis testing for male biased susceptibility (MBS). Then, I develop a theoretical model that explain MBS as a result of parasite-offspring competition for female resources. I present the first, unified model that explains male-biased susceptibility in animals and plants and provide parameters for model replication, applicable to almost all host-parasite pairings on Earth.  This thesis presents the first investigations of the natural history of Aenetus virescens larvae, their relationships with host trees, and the interactions with their avian predator. The results herein support existing theories of parasite aggregation and host specificity from a novel perspective. Furthermore, results support a newly emerging paradigm shift in animal camouflage evolution, and suggest a unified explanation for male biased susceptibility in animals and plants. The results herein help further our understanding of complex antagonistic relationships between parasites and their hosts, presenting novel theories on which future research can be built.</p>

2021 ◽  
Author(s):  
◽  
Kirsty Yule

<p>Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved.  In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density-dependent competition as infrapopulation size had no effect on long-term larval growth.  Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. In Chapter 3, I investigate larvae host specificity in relation to host nutritional rewards (phloem turnover and phloem sugar content) and host defences (bark thickness and wood density). The number of species parasitized was not explained by tree abundance, nutritional rewards or wood density. However, the number of trees parasitised declined significantly with increasing bark thickness indicating host external defences are an important driver of host specificity.  Camouflage in animals has traditionally been considered an anti-predator adaptation. Yet the adaptive consequences of camouflage, i.e. increased survivability via predator avoidance, has rarely been tested. In Chapter 4, I show that larvae webbing is visually cryptic to predating kaka, yet did not protect larvae from attack. Instead, cryptic webbing aids larvae thermoregulation suggesting crypsis is non-adaptive. These results support an exciting newly emerging paradigm shift that indicates the evolution of camouflage in animals may be more to do with abiotic conditions than biotic signalling.  Males are often the “sicker sex”, experiencing higher pathogen and parasite loads than females. In Chapter 5, I construct the largest host-parasite database to date, spanning 70 animal and 22 plant families, from which I conduct a meta-analysis testing for male biased susceptibility (MBS). Then, I develop a theoretical model that explain MBS as a result of parasite-offspring competition for female resources. I present the first, unified model that explains male-biased susceptibility in animals and plants and provide parameters for model replication, applicable to almost all host-parasite pairings on Earth.  This thesis presents the first investigations of the natural history of Aenetus virescens larvae, their relationships with host trees, and the interactions with their avian predator. The results herein support existing theories of parasite aggregation and host specificity from a novel perspective. Furthermore, results support a newly emerging paradigm shift in animal camouflage evolution, and suggest a unified explanation for male biased susceptibility in animals and plants. The results herein help further our understanding of complex antagonistic relationships between parasites and their hosts, presenting novel theories on which future research can be built.</p>


IAWA Journal ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 138-151 ◽  
Author(s):  
Luíza Teixeira-Costa ◽  
Gregório Ceccantini

Parasitic plants are capable of causing a variety of effects to their hosts, including alterations in the process of wood formation. However, the majority of studies dealing with parasitic plant anatomy have focused on the host–parasite interface and the direct action of the haustorium, which is the organ responsible for attaching the parasite to the host. Considering this gap, we studied the anatomical and functional effects caused by a mistletoe species, Phoradendron crassifolium (Santalaceae), on the wood anatomy of the host tree Tapirira guianensis (Anacardiaceae). Both parasitized and non-parasitized branches were collected from host trees. Traditional wood anatomy procedures were employed, along with functionality experiments using the ascent of safranin solution through the xylem. Prior to the analysis, all sampled branches were divided in “upstream” and “downstream” portions, considering the direction of xylem sap flow inside the plant body. This design was chosen in order to avoid biased results derived from normal ontogeny-related wood anatomical and functional changes. Our results showed that infested wood expressed a higher density of embolized vessels, narrower vessel lumen diameter, higher vessel density, taller and wider rays, and fibers with thinner cell walls. All these responses were most conspicuous in the downstream sections of the parasitized branches. We propose that the wood anatomical and functional alterations were induced by the combination of water stress caused by water use by the parasite and consequent low turgor in differentiating cambial derivates; by unbalanced auxin/cytokinin concentrations originating at the infestation region due to phloem disruptions caused by the parasite’s penetration and action; and by higher than usual ethylene levels. Further analysis of hydraulic conductivity and hormonal changes in host branches are necessary to test this hypothesis.


Parasitology ◽  
1999 ◽  
Vol 119 (S1) ◽  
pp. S111-S123 ◽  
Author(s):  
J. A. Jackson

SUMMARYEven the most generalist parasites usually occur in only a subset of potential host species, a tendency which reflects overriding environmental constraints on their distributions in nature. The periodic shifting of these limitations represented by host-switches may have been an important process in the evolution of many host-parasite assemblages. To study such events, however, it must first be established where and when they have occurred. Past host-switches within a group of parasites are usually inferred from a comparison of the parasite phylogeny with that of the hosts. Congruence between the phylogenies is often attributed to a history of association by descent with cospeciation, and incongruence to host-switching or extinction in ‘duplicated’ parasite lineages (which diverged without a corresponding branching of the host tree). The inference of host-switching from incongrucnt patterns is discussed. Difficulties arise because incongruence can frequently be explained by different combinations of biologically distinct events whose relative probabilities are uncertain. Also, the models of host parasite relationships implicit in historical reconstructions may often not allow for plausible sources of incongruence other than host-switching or duplication/extinction, or for the possibility that colonization could, in some circumstances, be disguised by ‘false’ congruence.


Parasitology ◽  
2016 ◽  
Vol 143 (13) ◽  
pp. 1730-1747 ◽  
Author(s):  
JOÃO P. MAIA ◽  
D. JAMES HARRIS ◽  
SALVADOR CARRANZA ◽  
ELENA GOMÉZ-DÍAZ

SUMMARYUnderstanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, knownLankesterellaspecies and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host–parasite compatibility between these lineages. ForPristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.


Parasitology ◽  
2015 ◽  
Vol 143 (3) ◽  
pp. 366-373 ◽  
Author(s):  
MARCELA P. A. ESPINAZE ◽  
ELÉONORE HELLARD ◽  
IVAN G. HORAK ◽  
GRAEME S. CUMMING

SUMMARYTicks and tick-borne pathogens can have considerable impacts on the health of livestock, wildlife and people. Knowledge of tick–host preferences is necessary for both tick and pathogen control. Ticks were historically considered as specialist parasites, but the range of sampled host species has been limited, infestation intensity has not been included in prior analyses, and phylogenetic distances between hosts have not been previously considered. We used a large dataset of 35 604 individual collections and two host-specificity indices to assess the specificity of 61 South African tick species, as well as distinctions between adult and juvenile ticks, for 95 mammalian hosts. When accounting for host phylogeny, most adult and juvenile ticks behaved as generalists, with juveniles being significantly more generalist than adults. When we included the intensity of tick infestation, ticks exhibited a wider diversity of specificity in all life stages. Our results show that ticks of mammals in South Africa tend to behave largely as generalists and that adult ticks are more host-specific. More generally, our analysis shows that the incorporation of life-stage differences, infestation intensity and phylogenetic distances between hosts, as well as the use of more than one specificity index, can all contribute to a deeper understanding of host–parasite interactions.


1993 ◽  
Vol 39 (10) ◽  
pp. 964-972 ◽  
Author(s):  
N. I. Khan ◽  
A. B. Filonow ◽  
L. L. Singleton ◽  
M. E. Payton

Strains of Actinoplanes spp. were evaluated for their in vitro parasitism of oospores of Pythium aphanidermatum, Pythium arrhenomanes, Pythium irregulare, Pythium myriotylum, and Pythium ultimum. Oospores of Pythium arrhenomanes, Pythium irregulare, and Pythium myriotylum were identified for the first time as hosts of Actinoplanes spp. Newly recorded parasites of oospores of Pythium spp. were Actinoplanes azureus, Actinoplanes brasiliensis, Actinoplanes caeruleus, Actinoplanes ferrugineus, Actinoplanes ianthinogenes, Actinoplanes italicus, Actinoplanes minutisporangius, Actinoplanes rectilineatus, Actinoplanes teichomyceticus, Actinoplanes utahensis, Actinoplanes violaceous, Actinoplanes yunnahenis, plus 15 strains of Actinoplanes yet to be speciated. Parasitized oospores had disorganized cytoplasms and hyphae of Actinoplanes sp. emerging from them. Infection of oospores in vitro varied from 0 to > 90%. Strains also were very active parasites of oospores in sterile soils. When added to nonsterile soils, several strains increased (p = 0.05) the level of oospore parasitism compared with nonsupplemented soils. Strains of Actinoplanes spp. exhibited a host specificity for species of Pythium in vitro and in soil. Sporulation of Actinoplanes sp. from infected oospores incubated on soil was frequent and more abundant than that observed in vitro.Key words: Pythium spp., Actinoplanes spp., actinomycetes, biological control, host–parasite specificity.


Parasitology ◽  
2013 ◽  
Vol 140 (5) ◽  
pp. 587-597 ◽  
Author(s):  
J. KOPRIVNIKAR ◽  
H. S. RANDHAWA

SUMMARYThe range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host–parasite co-evolution), as well as ‘encounter filters’ and ‘compatibility filters’ at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.


Parasitology ◽  
1962 ◽  
Vol 52 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
Colin Dobson

1. The mouse is more susceptible to infection than the rat.2. The male in both the rat and the mouse is more susceptible to infection than the female.3. The development of the worm is slower in the male rat than in the female. This relationship does not occur in the mouse.4. The ecological position of the adult parasite was different in the mouse and rat, the worms living further down the intestine in the rat.5. The effects of host species on infection of N. dubius are discussed.


IAWA Journal ◽  
2001 ◽  
Vol 22 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Teresa Quilhó ◽  
Helena Pereira

Eucalyptus globulus trees, 15 years old, were sampled at different heights from commercial pulpwood plantations in two sites in Portugal. Bark thickness was higher in the site with better growth and always decreased from the tree base to the top. Bark content was site independent and on average 11% of stem dry weight, higher at the base and top, and lower at 35% height level.Tree mean wood basic density averaged 600 kg /m3 and 568 kg /m3 for best and worst site, respectively, and was not correlated with tree growth. Wood density increased from base to top of the tree. Between-tree variation was low with coefficients of variation of site mean below 10%. Bark density (374 kg /m3 and 454 kg /m3 for best and worst site, respectively) did not show significant within tree variation. Average tree wood density could not be predicted with reasonable accuracy using a breast height sampling and better results were obtained using a sampling as a percentage of total height (e.g. 15%).


Sign in / Sign up

Export Citation Format

Share Document