scholarly journals The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in Candida albicans

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanzhen Lv ◽  
Lan Yan ◽  
Yuanying Jiang

The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans. This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.

2002 ◽  
Vol 46 (11) ◽  
pp. 3617-3620 ◽  
Author(s):  
Carol A. Baker ◽  
Kevin Desrosiers ◽  
Joseph W. Dolan

ABSTRACT Propranolol was used to investigate the role of phosphatidic acid (PA) and diacylglycerol in the dimorphic transition in Candida albicans. Propranolol was able to inhibit the appearance of germ tubes without decreasing growth rate. Data suggest that inhibition of morphogenesis may be due to binding by propranolol of PA derived from PLD1 hydrolysis of phosphatidylcholine.


2011 ◽  
Vol 10 (8) ◽  
pp. 1034-1042 ◽  
Author(s):  
Rebecca A. Hall ◽  
Kara J. Turner ◽  
James Chaloupka ◽  
Fabien Cottier ◽  
Luisa De Sordi ◽  
...  

ABSTRACTLiving as a commensal,Candida albicansmust adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects onC. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted byPseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of theCandidaadenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving theC. albicanshyphal repressor, Sfl1p. Deletion ofSFL1did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing inC. albicansis mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that theBurkholderia cenocepaciadiffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules.


1993 ◽  
Vol 264 (6) ◽  
pp. E863-E867 ◽  
Author(s):  
E. Gorczynska ◽  
D. J. Handelsman

The prompt rise in cytosolic calcium induced by follicle-stimulating hormone (FSH) in rat Sertoli cells suggests a role for calcium in FSH signal transduction. To evaluate the requirement for sodium in transmembrane calcium fluxes in Sertoli cells, we measured intracellular calcium concentration under sodium-free conditions and during stimulation by monensin and veratridine, used to elevate cytosolic sodium. Cytosolic calcium levels were measured by dual-wavelength spectrofluorimetry using freshly isolated cells loaded with fura-2 acetoxymethyl ester. Whereas, removal of extracellular sodium lowered cytosolic calcium in unstimulated cells from 89 +/- 4 to 75 +/- 8 nM, treatment with monensin and veratridine increased cytosolic calcium to 142 +/- 19 and 126 +/- 13 nM, respectively. Without extracellular calcium, monensin still produced 47% of the rise in cytosolic calcium observed in the presence of extracellular calcium, indicating approximately equal contributions of calcium from intracellular and extracellular sources. Blockade of voltage-sensitive or/and voltage-insensitive calcium channels by verapamil and ruthenium red was unable to completely prevent the monensin-induced elevation of cytosolic calcium. In addition tetrodotoxin failed to block the FSH-induced rise in cytosolic calcium. These observations, together with the considerable reduction in monensin-induced rise in cytosolic calcium under extracellular sodium-free condition, support the hypothesis that sodium-calcium exchange rather than the specific calcium or sodium channels regulate basal and monensin-induced transmembrane sodium and calcium fluxes in Sertoli cells.


2013 ◽  
Vol 13 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Yaoping Liu ◽  
Norma V. Solis ◽  
Clemens J. Heilmann ◽  
Quynh T. Phan ◽  
Aaron P. Mitchell ◽  
...  

ABSTRACTInSaccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence ofCandida albicans. We found thatC. albicansvps15Δ/Δ andvps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cellsin vitroand attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of thevps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway membersCHR11,UTR2,CRZ1,CNA1, andCNA2were elevated in thevps15Δ/Δ andvps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion ofCHR11andUTR2further increased the stress susceptibility of these mutants. In contrast, overexpression ofCRH11andUTR2partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking inC. albicansis essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enablesC. albicansto withstand environmental stress.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Hélène Tournu ◽  
Arturo Luna-Tapia ◽  
Brian M. Peters ◽  
Glen E. Palmer

ABSTRACT Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCE Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.


Sign in / Sign up

Export Citation Format

Share Document