scholarly journals Nucleotide Sequence Variation in Long-Term Tissue Cultures of Chinese Ginseng (Panax ginseng C. A. Mey.)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Sitong Liu ◽  
Xinfeng Wang ◽  
Ning Ding ◽  
Yutong Liu ◽  
Ning Li ◽  
...  

Plants have the salient biological property of totipotency, i.e., the capacity to regenerate a whole plant from virtually any kind of fully differentiated somatic cells after a process of dedifferentiation. This property has been well-documented by successful plant regeneration from tissue cultures of diverse plant species. However, the accumulation of somaclonal variation, especially karyotype alteration, during the tissue culture process compromises cell totipotency. In this respect, Chinese ginseng (Panax ginseng C. A. Mey.) is an exception in that it shows little decline in cell totipotency accompanied by remarkable chromosomal stability even after prolonged tissue cultures. However, it remains unclear whether chromosomal level stability necessarily couples with molecular genetic stability at the nucleotide sequence level, given that the two types of stabilities are generated by largely distinct mechanisms. Here, we addressed this issue by genome-wide comparisons at the single-base resolution of long-term tissue culture-regenerated P. ginseng plants. We identified abundant single nucleotide polymorphisms (SNPs) that have accumulated in cultured ginseng callus and are retained in the process of plant regeneration. These SNPs did not occur at random but showed differences among chromosomes and biased regional aggregation along a given chromosome. In addition, our results demonstrate that, compared with the overall genes, genes related to processes of cell totipotency and chromosomal stability possess lower mutation rates at both coding and flanking regions. In addition, collectively, the mutated genes exhibited higher expression levels than non-mutated genes and are significantly enriched in fundamental biological processes, including cellular component organization, development, and reproduction. These attributes suggest that the precipitated molecular level genetic variations during the process of regeneration in P. ginseng are likely under selection to fortify normal development. As such, they likely did not undermine chromosomal stability and totipotency of the long-term ginseng cultures.

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 929
Author(s):  
Carloalberto Petti

Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a “hormone-like” molecule and can trigger direct embryogenesis without callus formation.


1990 ◽  
Vol 32 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Jiřina Duškova ◽  
Z. Opatrný ◽  
Marie Sovová ◽  
J. Dušek

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 514
Author(s):  
Sitong Liu ◽  
Jing Zhao ◽  
Yutong Liu ◽  
Ning Li ◽  
Zhenhui Wang ◽  
...  

Chinese ginseng (Panax ginseng C. A. Meyer) is a highly cherished traditional Chinese medicine, with several confirmed medical effects and many more asserted health-boosting functions. Somatic chromosomal instability (CIN) is a hallmark of many types of human cancers and also related to other pathogenic conditions such as miscarriages and intellectual disabilities, hence, the study of this phenomenon is of wide scientific and translational medical significance. CIN also ubiquitously occurs in cultured plant cells, and is implicated as a major cause of the rapid decline/loss of totipotency with culture duration, which represents a major hindrance to the application of transgenic technologies in crop improvement. Here, we report two salient features of long-term cultured callus cells of ginseng, i.e., high chromosomal stability and virtually immortalized totipotency. Specifically, we document that our callus of ginseng, which has been subcultured for 12 consecutive years, remained highly stable at the chromosomal level and showed little decline in totipotency. We show that these remarkable features of cultured ginseng cells are likely relevant to the robust homeostasis of the transcriptional expression of specific genes (i.e., genes related to tissue totipotency and chromosomal stability) implicated in the manifestation of these two complex phenotypes. To our knowledge, these two properties of ginseng have not been observed in any animals (with respect to somatic chromosomal stability) and other plants. We posit that further exploration of the molecular mechanisms underlying these unique properties of ginseng, especially somatic chromosomal stability in protracted culture duration, may provide novel clues to the mechanistic understanding of the occurrence of CIN in human disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jungmin Ha ◽  
Hakyung Kwon ◽  
Kang-Heum Cho ◽  
Min Young Yoon ◽  
Moon Young Kim ◽  
...  

Abstract Cytosine methylation in genomic DNA affects gene expression, potentially causing phenotypic variation. Mungbean, an agronomically and nutritionally important legume species, is characterized by nonsynchronous pod maturity, resulting in multiple harvest which costs extra time and labor. To elucidate the epigenetic influences on synchronous pod maturity (SPM) in mungbean, we determined the genome-wide DNA methylation profiles of eight mungbean recombinant inbred lines (RILs) and their parental genotypes, and compared DNA methylation profiles between high SPM and low SPM RILs, thus revealing differentially methylated regions (DMRs). A total of 3, 18, and 28 pure DMRs, defined as regions showing no significant correlation between nucleotide sequence variation and methylation level, were identified in CpG, CHG, and CHH contexts, respectively. These DMRs were proximal to 20 genes. Among the 544 single nucleotide polymorphisms identified near the 20 genes, only one caused critical change in gene expression by early termination. Analysis of these genome-wide DNA methylation profiles suggests that epigenetic changes can influence the expression of proximal genes, regardless of nucleotide sequence variation, and that SPM is mediated through gibberellin-mediated hormone signaling pathways. These results provide insights into how epialleles contribute to phenotypic variation and improve SPM in mungbean cultivars.


1972 ◽  
Vol 18 (6) ◽  
pp. 775-781 ◽  
Author(s):  
C. P. Eng ◽  
J. F. Morgan

Long-term tissue cultures derived from the TA3 ascites tumor of the mouse became nontransplantable but induced a high degree of immunoprotection against challenge with as many as 106 virulent cells. Intraperitoneal immunization proved more effective than the intravenous or intramuscular routes. After chemical and physical treatments virulent TA3 cells showed no immunoprotective capacity. After similar treatments the nontumorigenic TA3 tissue-culture cells showed a moderate immunoprotective capacity. Nontumorigenic cells of the 6C3HED and TA3 lines induced a high degree of immunoprotection against solid tumor development produced by the subcutaneous injection of as many as 107 virulent cells. Protection against solid tumor development could be demonstrated provided immunization with nontumorigenic cells was begun within 2 weeks of implantation of the virulent cells.


2020 ◽  
Vol 36 (6) ◽  
pp. 49-54
Author(s):  
A.A. Nalbandyan ◽  
T.P. Fedulova ◽  
I.V. Cherepukhina ◽  
T.I. Kryukova ◽  
N.R. Mikheeva ◽  
...  

The flowering time control gene of various sugar beet plants has been studied. The BTC1 gene is a regulator for the suppressor (flowering time 1) and inducer (flowering time 2) genes of this physiological process. The F9/R9 primer pair was used for polymerase chain reaction; these primers are specific to the BTC1 gene region containing exon 9, as well as intron and exon 10. For the first time, nucleotide substitutions in exon 10 of BTC1 gene were identified in bolting sensitive samples (HF1 and BF1), which led to a change in the amino acid composition of the coded polypeptide chain. Based on the results of bioinformatic analysis, it can be assumed that certain nucleotide polymorphisms in the BTC1 gene may determine with a high probability the predisposition of sugar beet genotypes to early flowering. The use of the Geneious Prime tool for the analysis of the BTC1 gene sequences may allow the culling of genotypes prone to early flowering at early stages of selection. sugar beet, flowering gene, BTC1, genetic polymorphism, PCR, molecular genetic markers, selection


1989 ◽  
Vol 65 (4) ◽  
pp. 1125-1135 ◽  
Author(s):  
J G De Mey ◽  
M P Uitendaal ◽  
H C Boonen ◽  
M J Vrijdag ◽  
M J Daemen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document