acoustic losses
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
Taisei Noguchi ◽  
Yuji Ohashi ◽  
Masaya Omote ◽  
Yuui Yokota ◽  
Shunsuke Kurosawa ◽  
...  

Abstract The influence of the reflected waves at the bonding boundary on the resonance waveform and temperature characteristics was investigated using α-quartz (QZ). The double-layered resonator specimen was fabricated using 129.55°Y- and 0°Y-cut QZ substrates with the thickness ratio x=0.520. The temperature characteristic at the range from 100°C to 300°C was deviated from the calculated values estimated by the equations considering thickness and electric flux density ratio proposed in the previous work, and the resonant waveform of the specimen was deteriorated as compared with that of single-layer resonators. In order to clarify these phenomena, the phase matching conditions and total amplitude in the specimen were examined. As a result, it was clarified that increase of the amplitude in the layer with lower acoustic impedance was affected to the temperature characteristic, and acoustic losses due to reflection / transmission at the bonding boundary was affected to the total amplitude of resonance.


Author(s):  
Oleg K. Kucherenko

The work is devoted to the development of an acousto-optic deflector for a laser-beam guidance system (LLSN) of missiles. LLSN is used in semiautomatic portable missile systems to destroy hostile targets of various types. An analysis of the methods for constructing such systems has shown that the most promising devices with pulse-code modulation using semiconductor pulsed lasers. The article provides a diagram and describes the principle of operation of the LLSN with pulse-code modulation. A problematic issue in the implementation of such a system is the development of a device for deflecting a laser beam, through which the missile is guided to a target. Scanning mechanical devices that are currently in use have a complex design, significant dimensions and weight, and limited performance. The article proposes to use an acousto-optic deflector to deflect the laser beam within the information field of the guidance system, which is devoid of these disadvantages, since it replaces the mechanical scanning device with an electronic one. The purpose of the article is to determine the main parameters of the acousto-optical deflector. The article discusses the principle of operation of an acousto-optic deflector. It is noted that glasses based on germanium chalcogenides, in particular, glass with the composition Ge2.17As39.13S58.70, have especially low values of acoustic losses (α <1 dB / cm). The largest deflection angle of the laser beam will be observed with Bragg diffraction. Relationships are given that can be used to determine the main characteristics of the deflector: the angle of deflection of the laser beam, the modulation frequency of the acoustic wave, resolution, speed, and others. When using the above ratios for the typical parameters of the existing guidance system, the values of the indicated characteristics are calculated.


2021 ◽  
Vol 10 (2) ◽  
pp. 271-279
Author(s):  
Michal Schulz ◽  
Rezvan Ghanavati ◽  
Fabian Kohler ◽  
Jürgen Wilde ◽  
Holger Fritze

Abstract. A temperature sensor based on piezoelectric single crystals allowing stable operation in harsh environments such as extreme temperatures and highly reducing or oxidizing atmospheres is presented. The temperature dependence of the mechanical stiffness of thickness shear mode resonators is used to determine temperature changes. The sensor is based on catangasite (Ca3TaGa3Si2O14 – CTGS), a member of a langasite crystal family. CTGS exhibits an ordered crystal structure and low acoustic losses, even at 1000 ∘C. The resonance frequency and quality factor of unhoused and of housed CTGS resonators are measured up to about 1030 ∘C. A temperature coefficient of the resonance frequency of about 200 Hz K−1 for a 5 MHz device is found and enables determination of temperature changes as small as 0.04 K. Housed CTGS resonators do not show any significant change in the resonance behavior during a 30 d, long-term test at 711 ∘C.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850036 ◽  
Author(s):  
P. Risby Andersen ◽  
V. Cutanda Henríquez ◽  
N. Aage ◽  
S. Marburg

In recent years, the boundary element method has shown to be an interesting alternative to the finite element method for modeling of viscous and thermal acoustic losses. Current implementations rely on finite-difference tangential pressure derivatives for the coupling of the fundamental equations, which can be a shortcoming of the method. This finite-difference coupling method is removed here and replaced by an extra set of tangential derivative boundary element equations. Increased stability and error reduction is demonstrated by numerical experiments.


2018 ◽  
Vol 844 ◽  
pp. 216-246 ◽  
Author(s):  
G. Ghirardo ◽  
F. Boudy ◽  
M. R. Bothien

We discuss the statistics of acoustic pressure of thermoacoustic oscillations, either axial or azimuthal in nature. We derive a model where the describing functions of the fluctuating heat release rate of the flame and of the acoustic losses appear directly in the equations. The background combustion noise is assumed to be additive, and we show how one can recover, from the measurement of the acoustic pressure at the flame location, the projected describing function of the flame minus the acoustic losses. Using the same equations, one can predict the statistics of the amplitude of acoustic pressure for a certain system. The theory is then tested on an azimuthal thermoacoustic instability in an industrial annular combustor by measuring the state of the system, predicting the acoustic pressure amplitude statistics after a design change and comparing the prediction with the measured statistics after the design change has been implemented.


2017 ◽  
Vol 25 (04) ◽  
pp. 1750006 ◽  
Author(s):  
V. Cutanda Henríquez ◽  
P. Risby Andersen ◽  
J. Søndergaard Jensen ◽  
P. Møller Juhl ◽  
J. Sánchez-Dehesa

In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses are applied to an acoustic metamaterial. Metamaterials are structures formed by smaller, usually periodic, units showing remarkable physical properties when observed as a whole. Acoustic losses are relevant in metamaterials in the millimeter scale. In addition, their geometry is intricate and challenging for numerical implementation. The results are compared with existing measurements.


2016 ◽  
Vol 169 ◽  
pp. 209-215 ◽  
Author(s):  
Maarten Hoeijmakers ◽  
Viktor Kornilov ◽  
Ines Lopez Arteaga ◽  
Philip de Goey ◽  
Henk Nijmeijer

Sign in / Sign up

Export Citation Format

Share Document