scholarly journals The nitrate radical (NO<sub>3</sub>) oxidation of alpha-pinene is a significant source of secondary organic aerosol and organic nitrogen under simulated ambient nighttime conditions

2021 ◽  
Author(s):  
Kelvin H. Bates ◽  
Guy J. P. Burke ◽  
James D. Cope ◽  
Tran B. Nguyen

Abstract. The reaction of α-pinene with NO3 is an important sink of both α-pinene and NO3 at night in regions with mixed biogenic and anthropogenic emissions; however, there is debate on its importance for secondary organic aerosol (SOA) and reactive nitrogen budgets in the atmosphere. Previous experimental studies have generally observed low or zero SOA formation, often due to excessive [NO3] conditions. Here, we characterize the SOA and organic nitrogen formation from α-pinene + NO3 as a function of nitrooxy peroxy (nRO2) radical fates with HO2, NO, NO3, and RO2 in an atmospheric chamber. We show that SOA yields are not small when the nRO2 fate distribution in the chamber mimics that in the atmosphere, and the formation of pinene nitrooxy hydroperoxide (PNP) and related organonitrates in the ambient can be reproduced. Nearly all SOA from α-pinene + NO3 chemistry derives from the nRO2 + nRO2 pathway, which alone has an SOA mass yield of 65 (±9) %. Molecular composition analysis shows that particulate nitrates are a large (60–70 %) portion of the SOA, and that dimer formation is the primary mechanism of SOA production from α-pinene + NO3 under simulated nighttime conditions. We estimate an average nRO2 + nRO2 → ROOR branching ratio of ~18 %. Synergistic dimerization between nRO2 and RO2 derived from ozonolysis and OH oxidation also contribute to SOA formation, and should be considered in models. We report a 58 (±20) % molar yield of PNP from the nRO2 + HO2 pathway. Applying these laboratory constraints to model simulations of summertime conditions observed in the Southeast United States (where 80 % of α-pinene is lost via NO3 oxidation, leading to 20 % nRO2 + nRO2 and 45 % nRO2 + HO2) , we estimate yields of 13% SOA and 9% particulate nitrate by mass, and 26 % PNP by mole, from α-pinene + NO3 in the ambient. These results suggest that α-pinene + NO3 significantly contributes to the SOA budget, and likely constitutes a major removal pathway of reactive nitrogen from the nighttime boundary layer in mixed biogenic/anthropogenic areas.

2020 ◽  
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentration on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and α-pinene concentrations of 10 ppb and 50 ppb, respectively, at constant temperatures of 20 °C, 0 °C, or −15 °C, and at changing temperatures (ramps) from −15 °C to 20 °C and from 20 °C to −15 °C. The chemical composition of the particles was probed using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A four-factor solution of a Positive Matrix Factorization (PMF) analysis of combined HR-ToF-AMS data from experiments conducted under different conditions is presented. The PMF analysis as well as elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 °C). Higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 °C or −15 °C) result in lower oxidation level of the molecules contained in the particles. With respect to carbon oxidation state, particles formed at 0 °C are more comparable to particles formed at −15 °C than to those formed at 20 °C. A remarkable observation is that changes in temperature during or after particle formation result in only minor changes in the elemental composition of the particles. The temperature at which aerosol particle formation is initiated thus seems to be a critical parameter for the particle elemental composition. Comparison of the AMS derived estimates of the content of organic acids in the particles based on m/z 44 in the spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. While higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), the organic acid functionalities account for an increasing fraction of the measured SOA mass at higher temperatures.


2017 ◽  
Author(s):  
Jianhuai Ye ◽  
Jonathan P. D. Abbatt ◽  
Arthur W. H. Chan

Abstract. Ozonolysis of monoterpenes is an important source of atmospheric biogenic secondary organic aerosol (BSOA). While enhanced BSOA formation has been associated with sulfate-rich conditions, the underlying mechanisms remain poorly understood. In this work, the interactions between SO2 and reactive intermediates from monoterpene ozonolysis were investigated under different humidity conditions (10 % vs. 50 %). Chamber experiments were conducted with ozonolysis of alpha-pinene or limonene in the presence of SO2. Limonene SOA formation was enhanced in the presence of SO2, while no significant changes in SOA yields were observed during alpha-pinene ozonolysis. Under dry conditions, SO2 primarily reacted with stabilized Criegee Intermediates (sCI) produced from ozonolysis, but at 50 % RH, heterogeneous uptake of SO2 onto organic aerosol was found to be the dominant sink of SO2, likely owing to reactions between SO2 and organic peroxides. This SO2 loss mechanism to organic peroxides in SOA has not previously been identified in experimental chamber study. Organosulfates were detected and identified using electrospray ionization-ion mobility time of flight mass spectrometer (ESI-IMS-TOF) when SO2 was present in the experiments. Our results demonstrate the synergistic effects between BSOA formation and SO2 oxidation through sCI chemistry and SO2 uptake onto organic aerosol and illustrate the importance of considering the chemistry of organic and sulfur-containing compounds holistically to properly account for their reactive sinks.


2004 ◽  
Vol 4 (3) ◽  
pp. 2905-2948 ◽  
Author(s):  
M. E. Jenkin

Abstract. The formation and detailed composition of secondary organic aerosol (SOA) from the gas phase ozonolysis of α- and β-pinene has been simulated using the Master Chemical Mechanism version 3 (MCM v3), coupled with a representation of gas-to-aerosol transfer of semivolatile and involatile oxygenated products. A kinetics representation, based on equilibrium absorptive partitioning of ca. 200 semivolatile products, was found to provide an acceptable description of the final mass concentrations observed in a number of reported laboratory and chamber experiments, provided partitioning coefficients were increased by about two orders of magnitude over those defined on the basis of estimated vapour pressures. This adjustment is believed to be due, at least partially, to the effect of condensed phase association reactions of the partitioning products. Even with this adjustment, the simulated initial formation of SOA was delayed relative to that observed, implying the requirement for the formation of species of much lower volatility to initiate SOA formation. The inclusion of a simplified representation of the formation and gas-to-aerosol transfer of involatile dimers of 22 bi- and multifunctional carboxylic acids (in addition to the absorptive partitioning mechanism) allowed a much improved description of SOA formation for a wide range of conditions. The simulated SOA composition recreates certain features of the product distributions observed in a number of experimental studies, but implies an important role for multifunctional products containing hydroperoxy groups (i.e. hydroperoxides). This is particularly the case for experiments in which 2-butanol is used to scavenge OH radicals, because [HO2]/[RO2] ratios are elevated in such systems. The optimized mechanism is used to calculate SOA yields from α- and β-pinene ozonolysis in the presence and absence of OH scavengers, and as a function of temperature.


2017 ◽  
Vol 19 (10) ◽  
pp. 1220-1234 ◽  
Author(s):  
K. Kristensen ◽  
L. N. Jensen ◽  
M. Glasius ◽  
M. Bilde,

Composition of aerosol from oxidation of alpha-pinene is affected by reaction temperature with decreased contribution from low volatile dimer esters at low temperatures.


2008 ◽  
Vol 113 (D21) ◽  
Author(s):  
Y. Kondo ◽  
Y. Morino ◽  
M. Fukuda ◽  
Y. Kanaya ◽  
Y. Miyazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document