press disturbance
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Debbie Mair

<p>This ecological and geomorphological assessment of Horokiri Stream and Ration Creek was conducted across four longitudinal zones to explore the effects of sediment delivery, run-off, channel form, riparian and in-stream habitat. The Horokiri Stream channel has moved approximately 7 metres westward over the last 20 years, with both banks now covered in long grass, flaxes, natives with a mix of tall canopy trees. Looking at stream, Spearman’s for Ration at Figure 27 (n = 16, rho -0.243, p = 0.36) as deposited sediment increased, MCI decreased, non-significant. Spearman’s for Horokiri at Figure 28 (n = 16, rho 0.247, p = 0.35) as MCI increased with sediment, non-significant. Results from upstream of the riparian zones showed more deposited fine sediment. However, within both the riparian zones the sediment deposition was much lower. The native riparian planting along the stream banks had a positive effect on reducing sedimentation. The findings support the concept that the restoration of riparian zones with buffer widths exceeding 10 metres can improve stream habitat and invertebrate health. There was no relationship between flow and deposition rate P(X2>241.84) = 0.24. Figure 24 shows deposited sediment on MCI depending on land use groups (X2 = 11.81, df = 4, p = 0.019). No statistically significant differences were found (comparing the effect of sediment between different land use management groups).  An experiment investigated a disturbance hypothesis in both Ration Creek and Horokiri Stream was conducted during February 2019. The experiment was designed to be long enough to study the effects of four weekly pulse flushing events created by scrapping the stream bed with a drain drag tool and the effects of a press sustained disturbance on the macroinvertebrate community. I measured the sediment and the macroinvertebrate captured in each trap within the experiment site every seven days. My prediction was that macroinvertebrate communities subject to sustained fine sediment delivery (press disturbance) are affected by simulated pulse flushing events (pulse disturbance). A comparison of sediment depositional rate before and after the manipulative experiment (Figure 36) showed higher sediment deposition after the pulse flushing events (1.55 W/A/D) compared to before during the assessment phase (0.88 W/A/D) in Horokiri (t = 2.35, df = 8.95, p = 0.04), but no significant difference before (1.57 W/A/D) or after (1.38 W/A/D) in Ration (t = -0.818, df = 7.71, p = 0.44). It appeared that the smaller riparian buffer width of 2-5m at Ration Creek did not limit sediment deposition. The effects of sediment disturbance in the experiment reflect the rapid ability of macroinvertebrates to respond to sediment by drifting out of unsuitable areas. The weekly pulse disturbance events resulted in increased sediment deposition compared to the background levels of sediment deposition (indicative of a press disturbance) in both streams. As pulse disturbance events increased, the number of macroinvertebrate taxa decreased. Horokiri Stream invertebrate communities declined by 33% compared to Ration Creek which declined by 50%.</p>


2021 ◽  
Author(s):  
◽  
Debbie Mair

<p>This ecological and geomorphological assessment of Horokiri Stream and Ration Creek was conducted across four longitudinal zones to explore the effects of sediment delivery, run-off, channel form, riparian and in-stream habitat. The Horokiri Stream channel has moved approximately 7 metres westward over the last 20 years, with both banks now covered in long grass, flaxes, natives with a mix of tall canopy trees. Looking at stream, Spearman’s for Ration at Figure 27 (n = 16, rho -0.243, p = 0.36) as deposited sediment increased, MCI decreased, non-significant. Spearman’s for Horokiri at Figure 28 (n = 16, rho 0.247, p = 0.35) as MCI increased with sediment, non-significant. Results from upstream of the riparian zones showed more deposited fine sediment. However, within both the riparian zones the sediment deposition was much lower. The native riparian planting along the stream banks had a positive effect on reducing sedimentation. The findings support the concept that the restoration of riparian zones with buffer widths exceeding 10 metres can improve stream habitat and invertebrate health. There was no relationship between flow and deposition rate P(X2>241.84) = 0.24. Figure 24 shows deposited sediment on MCI depending on land use groups (X2 = 11.81, df = 4, p = 0.019). No statistically significant differences were found (comparing the effect of sediment between different land use management groups).  An experiment investigated a disturbance hypothesis in both Ration Creek and Horokiri Stream was conducted during February 2019. The experiment was designed to be long enough to study the effects of four weekly pulse flushing events created by scrapping the stream bed with a drain drag tool and the effects of a press sustained disturbance on the macroinvertebrate community. I measured the sediment and the macroinvertebrate captured in each trap within the experiment site every seven days. My prediction was that macroinvertebrate communities subject to sustained fine sediment delivery (press disturbance) are affected by simulated pulse flushing events (pulse disturbance). A comparison of sediment depositional rate before and after the manipulative experiment (Figure 36) showed higher sediment deposition after the pulse flushing events (1.55 W/A/D) compared to before during the assessment phase (0.88 W/A/D) in Horokiri (t = 2.35, df = 8.95, p = 0.04), but no significant difference before (1.57 W/A/D) or after (1.38 W/A/D) in Ration (t = -0.818, df = 7.71, p = 0.44). It appeared that the smaller riparian buffer width of 2-5m at Ration Creek did not limit sediment deposition. The effects of sediment disturbance in the experiment reflect the rapid ability of macroinvertebrates to respond to sediment by drifting out of unsuitable areas. The weekly pulse disturbance events resulted in increased sediment deposition compared to the background levels of sediment deposition (indicative of a press disturbance) in both streams. As pulse disturbance events increased, the number of macroinvertebrate taxa decreased. Horokiri Stream invertebrate communities declined by 33% compared to Ration Creek which declined by 50%.</p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Nelson Valdivia ◽  
Moisés A. Aguilera ◽  
Bernardo R. Broitman

Stability is a central property of complex systems and encompasses multiple dimensions such as resistance, resilience, recovery, and invariability. How these dimensions correlate among them is focus of recent ecological research, but empirical evidence at regional scales, at which conservation decisions are usually made, remains absent. Using a field-based manipulative experiment conducted in two marine intertidal regions, we analyze the correlations among different aspects of stability in functioning (community cover) and composition of local communities facing a press disturbance. The experiment involved the removal of the local space-dominant species for 35 months in eight sites under different environmental regimes in northern- and southern-central Chile (ca. 30 and 40°S, respectively). After the disturbance, the magnitude of the initial responses and the recovery patterns were similar among communities dominated by different species, but varied between the functional and compositional response variables, and among four dimensions of stability. The recovery trajectories in function and composition remained mostly uncorrelated across the system. Yet, larger initial functional responses were associated with faster recovery trajectories—high functional resilience, in turn, was associated with both, high and low variability in the pattern of recovery. Finally, the compositional stability dimensions were independent from each other. The results suggest that varying community compositions can perform similar levels of functioning, which might be the result of strong compensatory dynamics among species competing for space in these communities. Knowledge of several, and sometimes independent, aspects of stability is mandatory to fully describe the stability of complex ecological systems.


2020 ◽  
Vol 12 (24) ◽  
pp. 10591
Author(s):  
Young-Mok Heo ◽  
Hanbyul Lee ◽  
Sun-Lul Kwon ◽  
Yeonjae Yoo ◽  
Dongjun Kim ◽  
...  

Unexpected vegetation shift is a serious problem caused by climate change, resulting in considerable damage to local communities. It is necessary to be continuously monitored, and the soil microbial community is expected to reflect the pressure on forest ecosystems due to climate change. We investigated soil bacterial and fungal communities in Odaesan at a four-year interval through eDNA meta-barcoding and analyzed the compositional and functional differences between forest types (Mongolian oak (Quercus mongolica) forest with and without Manchurian firs (Abies holophylla)) and sampling years. As a result, denitrifiers predominated in the presence of Manchurian firs, but there was no difference in the influence of climate change by forest type. Although tree vegetation remained stable, the microbial communities significantly changed over four years. This result demonstrates that climate change significantly shifts the microbial communities, even if not enough to trigger a vegetation shift, thus a microbial indicator can be developed to assess the press disturbance accumulated on the forest ecosystem. Through this study, we identified the influence of Manchurian firs and that of climate change on soil microbial communities in temperate forests and demonstrated the potential of the microbial community as a proactive indicator of vegetation shift due to climate change.


2020 ◽  
Author(s):  
Nelson Valdivia ◽  
Moisés A. Aguilera ◽  
Bernardo R. Broitman

AbstractStability is a central property of complex systems and encompasses multiple dimensions such as resistance, resilience, recovery, and invariability. How these dimensions correlate among them is focus of recent ecological research, but empirical evidence at regional scales, at which conservation decisions are usually made, remains absent. Using a field-based manipulative experiment conducted in two marine intertidal regions, we analyse the correlations among different aspects of stability in functioning (community cover) and composition of local communities facing a press disturbance. The experiment involved the removal of the local space-dominant species for 35 months in eight sites under different environmental regimes in northern- and southern-central Chile (ca. 30°S and 40°S, respectively). After the disturbance, the magnitude of the initial responses and the recovery patterns were similar among communities dominated by different species, but varied between the functional and compositional response variables, and among four dimensions of stability. The recovery trajectories in function and composition remained mostly uncorrelated across the system. Yet, larger initial functional responses were associated with faster recovery trajectories—high functional resilience, in turn, was associated with both, high and low variability in the pattern of recovery. Finally, the compositional stability dimensions were independent from each other. The results suggest that varying community compositions can perform similar levels of functioning, which might be the result of strong compensatory dynamics among species competing for space in these communities. Knowledge of several, and sometimes independent, aspects of stability is mandatory to fully describe the stability of complex ecological systems.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Ezequiel Santillan ◽  
Florentin Constancias ◽  
Stefan Wuertz

ABSTRACT Press disturbances are of interest in microbial ecology, as they can drive microbial communities to alternative stable states. However, the effect of press disturbances in community assembly mechanisms, particularly with regard to taxa and functional genes at different levels of abundance (i.e., common and rare), remains largely unknown. Here, we tested the effect of a continuous alteration in substrate feeding scheme on the structure, function, and assembly of bacterial communities. Two sets of replicate 5-liter sequencing batch reactors were operated at two different organic carbon loads for a period of 74 days, following 53 days of acclimation after inoculation with sludge from a full-scale treatment plant. Temporal dynamics of community taxonomic and functional gene structure were derived from metagenomics and 16S rRNA gene metabarcoding data. Disturbed reactors exhibited different community function, structure, and assembly compared to undisturbed reactors. Bacterial taxa and functional genes showed dissimilar α-diversity and community assembly patterns. Deterministic assembly mechanisms were generally stronger in disturbed reactors and in common fractions compared to rare ones. Function quickly recovered after the disturbance was removed, but community structure did not. Our results highlight that functional gene data from metagenomics can indicate patterns of community assembly that differ from those obtained from taxon data. This study reveals how a joint evaluation of assembly mechanisms and community structure of bacterial taxa and functional genes as well as ecosystem function can unravel the response of complex microbial systems to a press disturbance. IMPORTANCE Ecosystem management must be viewed in the context of increasing frequencies and magnitudes of various disturbances that occur at different scales. This work provides a glimpse of the changes in assembly mechanisms found in microbial communities exposed to sustained changes in their environment. These mechanisms, deterministic or stochastic, can cause communities to reach a similar or variable composition and function. For a comprehensive view, we use a joint evaluation of temporal dynamics in assembly mechanisms and community structure for both bacterial taxa and their functional genes at different abundance levels, in both disturbed and undisturbed states. We further reverted the disturbance state to contrast recovery of function with community structure. Our findings are relevant, as very few studies have employed such an approach, while there is a need to assess the relative importance of assembly mechanisms for microbial communities across different spatial and temporal scales, environmental gradients, and types of disturbance.


2020 ◽  
Vol 641 ◽  
pp. 63-77
Author(s):  
CO Blain ◽  
NT Shears

Underwater light is essential for fuelling coastal productivity. However, elevated turbidity, resulting from land-based activities and climate change, is often overlooked as a threat to coastal ecosystems. Understanding how low light, and specifically the temporal delivery of light, affects the productivity of forest-forming species is necessary to predict how ecosystems and species will respond to future increases in turbidity. Outdoor mesocosm experiments were used to compare the low-light tolerance of 2 forest-forming macrophytes that vary in their distribution in relation to turbidity, and investigate how the temporal delivery of light, i.e. press vs. pulse low-light disturbance, affects net primary productivity (NPP). We showed that the kelp Ecklonia radiata, which dominates reefs with low turbidity, is more productive per unit biomass under high-light conditions than the fucoid Carpophyllum flexuosum, which typifies more turbid waters. Under low light, E. radiata suffered greater tissue loss and had lower NPP than C. flexuosum. Under both press and pulse treatments, E. radiata showed significant losses of lamina biomass and reduced NPP, while C. flexuosum showed net growth under press disturbance, and only lost tissue and had reduced NPP under pulse disturbance. The greater tolerance of C. flexuosum to decreased light, and differential responses of E. radiata and C. flexuosum to press and pulse low-light conditions, provide mechanistic support for C. flexuosum being better suited to turbid low-light environments than E. radiata. These results suggest future increases in turbidity may facilitate a shift from kelp-dominated forests to alternate states, resulting in reduced primary productivity.


2020 ◽  
Vol 375 (1798) ◽  
pp. 20190255 ◽  
Author(s):  
Jackson W. Sorensen ◽  
Ashley Shade

In disturbance ecology, stability is composed of resistance to change and resilience towards recovery after the disturbance subsides. Two key microbial mechanisms that can support microbiome stability include dormancy and dispersal. Specifically, microbial populations that are sensitive to disturbance can be re-seeded by local dormant pools of viable and reactivated cells, or by immigrants dispersed from regional metacommunities. However, it is difficult to quantify the contributions of these mechanisms to stability without, first, distinguishing the active from inactive membership, and, second, distinguishing the populations recovered by local resuscitation from those recovered by dispersed immigrants. Here, we investigate the contributions of dormancy dynamics (activation and inactivation), and dispersal to soil microbial community resistance and resilience. We designed a replicated, 45-week time-series experiment to quantify the responses of the active soil microbial community to a thermal press disturbance, including unwarmed control mesocosms, disturbed mesocosms without dispersal, and disturbed mesocosms with dispersal after the release of the stressor. Communities changed in structure within one week of warming. Though the disturbed mesocosms did not fully recover within 29 weeks, resuscitation of thermotolerant taxa was key for community transition during the press, and both resuscitation of opportunistic taxa and immigration contributed to community resilience. Also, mesocosms with dispersal were more resilient than mesocosms without. This work advances the mechanistic understanding of how microbiomes respond to disturbances in their environment. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.


2019 ◽  
Author(s):  
Jackson W Sorensen ◽  
Ashley Shade

AbstractIn disturbance ecology, stability is composed of resistance to change and resilience towards recovery after the disturbance subsides. Two key microbial mechanisms that can support microbiome stability include dormancy and dispersal. Specifically, microbial populations that are sensitive to disturbance can be re-seeded by local dormant pools of viable and reactivated cells, or by immigrants dispersed from regional metacommunities. However, it is difficult to quantify the contributions of these mechanisms to stability without, first, distinguishing the active from inactive membership, and, second, distinguishing the populations recovered by local resuscitation from those recovered by dispersed immigrants. Here, we investigate the contributions of dormancy dynamics (activation and inactivation), and dispersal to soil microbial community resistance and resilience. We designed a replicated, 45-week time-series experiment to quantify the responses of the active soil microbial community to a thermal press disturbance, including control mesocosms, disturbed mesocosms without dispersal, and disturbed mesocosms with dispersal after the release of the stressor. Communities were sensitive within one week of warming. Though the disturbed mesocosms did not fully recover within 29 weeks, resuscitation of thermotolerant taxa was key for community transition during the press, and both resuscitation of opportunistic taxa and immigration contributed to community resilience. Also, mesocosms with dispersal were more resilient than mesocosms without. This work advances the mechanistic understanding of how microbiomes respond to disturbances in their environment.


2017 ◽  
Author(s):  
Patrick J Kearns ◽  
Ashley Shade

Understanding the relationship between microbial community structure and function is a major challenge in microbial ecology. Recent work has shown that community weighted mean 16S rRNA gene copies, as a proxy for heterotrophic growth strategy, is a microbial community trait that decreases predictably over successional trajectories that are underpinned by changes in resource availability. However, it has been challenging to identify other microbial traits that are predictive of community functions and have consistent patterns with succession. Trait-based patterns of secondary succession (e.g., after a disturbance) are less often considered, and these responses may be underpinned by abiotic drivers other than changes in resources. In this perspectives piece, we present hypotheses about microbial traits important for microbial succession in resource-based and post-press disturbance scenarios, as synthesized from previous works and extended within this work. Using four case studies, we compare two traits, heterotrophic strategy and dormancy potential, and two different types of succession, resource-based (endogenous heterotrophic) and post-press. There were decreases in weighted ribosomal operon counts and in dormancy genes over resource-based succession. Both traits also were lower in post-press succession as compared to reference conditions, but increased with time from disturbance. Thus, dormancy potential may be an additional trait that changes predictably with succession. Finally, considering changes in microbial community traits over post-press succession is as important as over resource-based succession. These patterns need be interpreted carefully and reference and recovering samples can be collected to improve interpretation of changes in community traits over post-press succession.


Sign in / Sign up

Export Citation Format

Share Document