revolute clearance joint
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Yu Chen ◽  
Jun Feng ◽  
Qiang He ◽  
Yu Wang ◽  
Yu Sun ◽  
...  

Abstract The slider-crank mechanism is used widely in modern industrial equipment whereby the contact-impact of a revolute clearance joint affects the dynamic behavior of mechanical systems. Combining multibody dynamic theory and nonlinear contact theory, the computational methodology for dynamic analysis of the slider-crank mechanism with a clearance joint is proposed. The differential equations of motion are obtained considering the revolute clearance joint between the connecting rod and slider. In the mechanical system, the contact force is evaluated using the continuous force model proposed by Lankarani and Nikravesh, which can describe the contact-impact phenomenon accurately. Then, the experimental study is performed whereby the numerical results are compared with the test data to validate the proposed model. Moreover, the dynamic response analysis is conducted with various driving velocities and clearance sizes, which also explains that the sensitive dependence of a mechanical system on the revolute clearance joint.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhengfeng Bai ◽  
Jijun Zhao

Clearances in the joints of real mechanisms are unavoidable due to assemblage, manufacturing errors, and wear. The dual-axis driving and positioning mechanism is one kind of space actuating mechanism for satellite antenna to implement precise guidance and positioning. However, in dynamics analysis and control of the satellite antenna system, it is usually assumed that the revolute joint in the satellite antenna system is perfect without clearances or imperfect with planar radial clearance. However, the axial clearance in an imperfect revolute joint is always ignored. In this work, the revolute joint is considered as a 3D spatial clearance joint with both the radial and axial clearances. A methodology for modeling the 3D revolute joint with clearances and its application in satellite antenna system is presented. The dynamics modeling and analysis of the satellite antenna system are investigated considering the 3D revolute clearance joint. Firstly, the mathematical model of the 3D revolute clearance joint is established, and the definitions of the radial and axial clearance are presented. Then, the potential contact modes, contact conditions, and contact detection of the 3D revolute clearance joint are analyzed. Further, the normal and tangential contact force models are established to describe the contact phenomenon and determine the contact forces in the 3D revolute clearance joint. Finally, a satellite antenna system considering the 3D revolute clearance joint with spatial motion is presented as the application example. Different case studies are presented to discuss the effects of the 3D revolute clearance joint. The results indicate that the 3D revolute clearance joint will lead to more severe effects on the dynamic characteristics of the satellite antenna system. Therefore, the effects of axial clearance on the satellite antenna system cannot be ignored in dynamics analysis and design of the satellite antenna system.


2020 ◽  
pp. 107754632095051
Author(s):  
Zheng Feng Bai ◽  
Xin Jiang ◽  
Ji Yu Li ◽  
Ji Jun Zhao ◽  
Yang Zhao

In the dynamic modeling and simulation of mechanical system with revolute clearance joint, it is usually assumed that the revolute joint is planar joint with radial clearance, but the axial clearance is ignored. In this article, the dynamic responses of a mechanical system considering both radial and axial clearances in 3D revolute clearance joint are investigated using a computational methodology. First, the mathematic model of 3D revolute clearance joint is established considering the radial and axial clearances. The definitions of the radial and axial clearances, the potential contact modes, contact conditions, and contact detection for 3D revolute clearance joint are presented. Furthermore, the normal and tangential contact force models are established to describe the contact phenomenon and determine the contact forces in revolute clearance joints. Finally, two demonstrative application examples are presented to illustrate the dynamic characteristics of mechanical systems considering both radial and axial clearances in revolute clearance joints. A slider-crank mechanism with planar motion and a double pendulum with spatial motion are investigated. Different cases are presented to analyze the dynamic characteristics of a mechanical system considering radial and axial clearances in 3D revolute clearance joints.


2019 ◽  
Vol 134 ◽  
pp. 385-393 ◽  
Author(s):  
Jianan Guo ◽  
Peng He ◽  
Zhansheng Liu ◽  
Hongyan Huang

2018 ◽  
Vol 10 (08) ◽  
pp. 1850090 ◽  
Author(s):  
Xiao-Fei Ma ◽  
Tuan-Jie Li

Clearance is inevitable in the deployable mechanisms due primarily to the kinematic function requirements. This phenomenon affects the dynamic performances of deployed structures negatively. In this paper, the wave analysis of dynamic characteristics of planar structures with revolute clearance joints is developed by spectral element method. First, the spectral element model of revolute clearance joints is established. The radial and tangential springs and damping coefficients of revolute clearance joints are evaluated based on the contact model of elastic foundation. Then, the wave equations of two beams connected by a revolute clearance joint are derived, and extended to the case of multiple beams connected by revolute clearance joints. Finally, the dynamic response is analyzed for planar structures with single revolute clearance joint and multiple revolute clearance joints under the impact load. The wave propagation rules in planar structures with revolute clearance joints are revealed.


Author(s):  
Xiao Tan ◽  
Guoping Chen ◽  
Dongyang Sun ◽  
Yan Chen

A computational methodology to model and analyze planar rigid mechanical system with stick–slip friction in revolute clearance joint is presented. In this work, the LuGre friction model, which captures the Stribeck effect and spring-like characteristics for stiction, is employed to estimate the stick–slip friction in revolute clearance joint. A hybrid contact force model, combining Lankarani–Nikravesh model, and improved elastic foundation model, is used to establish contact model. The generalized-α method, which can dissipate the spurious high-frequency responses caused by the strongly nonlinear contact force and friction in numerical simulation, is adopted to solve the equations of motion and make the result closer to the physics of the problem. A slider-crank mechanism with revolute clearance joint based on LuGre friction model and modified coulomb friction model are simulated, respectively, and utilized to discuss the influences of the Stribeck effect and stiction on dynamic behavior of the mechanism. Different test scenarios are considered to investigate the effects of the clearance size and friction coefficient on the dynamic response of the mechanism. The results show that the mechanism based on LuGre friction model has better energy dissipation characteristics, while there are stiction phenomena of the contacting surfaces in many cases. When the relative velocity is zero or close to zero, the contact force of mechanism based on the LuGre friction model is significantly lower than that based on the modified coulomb friction model. Clearance size and friction coefficient obviously affect dynamic behavior of the mechanism.


Author(s):  
Lixin Yang ◽  
Xianmin Zhang ◽  
Yanjiang Huang

Dynamic model of a typical open-loop mechanism with multiple spatial revolute clearance joints were established based on the Newton–Euler equations and the Hertzian contact deformation theory. An augmented constraint violation correction method was presented to solve the nonlinear dynamic equations of motion, which improved the global convergence and stability effectively. The nonlinear dynamic behaviors of a serial robot manipulator with two spatial revolute clearance joints were studied to demonstrate the effects of the location and coupling relationship of the clearance joints. Numerical results show that the influence of spatial revolute clearance joint on the dynamic behaviors of the open-loop mechanism is relatively stronger than that of the planar ones. The location of the spatial revolute clearance joints is an important factor to dynamic behavior of the system. The closer the spatial revolute clearance joint is to the end-effector, the stronger influence it has on the system. The spatial revolute clearance joints interact significantly with each another, which exhibits vigorous vibration with a higher frequency, larger amplitude, and deeper penetration. This work provides new insights into investigating the nonlinear dynamic behaviors of the systems with spatial revolute clearance joints.


Sign in / Sign up

Export Citation Format

Share Document