steady state precession
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 54 (4) ◽  
pp. 211-218
Author(s):  
Judith Eva Spiro ◽  
Adrian Curta ◽  
Shiwa Mansournia ◽  
Constantin Arndt Marschner ◽  
Stefan Maurus ◽  
...  

Abstract Objective: To evaluate the performance of 1.5 T true fast imaging with steady state precession (TrueFISP) magnetic resonance imaging (MRI) sequences for the detection and characterization of pulmonary abnormalities caused by coronavirus disease 2019 (COVID-19). Materials and Methods: In this retrospective single-center study, computed tomography (CT) and MRI scans of 20 patients with COVID-19 pneumonia were evaluated with regard to the distribution, opacity, and appearance of pulmonary lesions, as well as bronchial changes, pleural effusion, and thoracic lymphadenopathy. McNemar’s test was used in order to compare the COVID-19-associated alterations seen on CT with those seen on MRI. Results: Ground-glass opacities were better visualized on CT than on MRI (p = 0.031). We found no statistically significant differences between CT and MRI regarding the visualization/characterization of the following: consolidations; interlobular/intralobular septal thickening; the distribution or appearance of pulmonary abnormalities; bronchial pathologies; pleural effusion; and thoracic lymphadenopathy. Conclusion: Pulmonary abnormalities caused by COVID-19 pneumonia can be detected on TrueFISP MRI sequences and correspond to the patterns known from CT. Especially during the current pandemic, the portions of the lungs imaged on cardiac or abdominal MRI should be carefully evaluated to promote the identification and isolation of unexpected cases of COVID-19, thereby curbing further spread of the disease.


2021 ◽  
pp. 1-8
Author(s):  
Alon Kashanian ◽  
Nader Binesh ◽  
Barry D. Pressman ◽  
Moise Danielpour

<b><i>Introduction:</i></b> Arachnoid membranes are well recognized as a cause of cerebrospinal fluid (CSF) flow impairment in disorders such as obstructive hydrocephalus and syringohydromyelia, but can be difficult to detect with standard noninvasive imaging techniques. True fast imaging with steady-state precession (TrueFISP) can exhibit brain pulsations and CSF dynamics with high spatiotemporal resolution. Here, we demonstrate the utility of this technique in the diagnosis and management of arachnoid membranes in the posterior fossa. <b><i>Case Presentations:</i></b> Three symptomatic children underwent cine TrueFISP imaging for suspicion of CSF membranous obstruction. Whereas standard imaging failed to or did not clearly visualize the site of an obstructive lesion, preoperative TrueFISP identified a membrane in all 3 cases. The membranes were confirmed intraoperatively, and postoperative TrueFISP helped verify adequate marsupialization and recommunication of CSF flow. Two out of the 3 cases showed a decrease in cerebellar tonsillar pulsatility following surgery. All children showed symptomatic improvement. <b><i>Conclusion:</i></b> TrueFISP is able to detect pulsatile arachnoid membranes responsible for CSF outflow obstruction that are otherwise difficult to visualize using standard imaging techniques. We advocate use of this technology in pre- and postsurgical decision-making as it provides a more representative image of posterior fossa pathology and contributes to our understanding of CSF flow dynamics. There is potential to use this technology to establish prognostic biomarkers for disorders of CSF hydrodynamics.


2017 ◽  
Vol 3 (2) ◽  
pp. 437-440 ◽  
Author(s):  
Stefan Pollnow ◽  
Areg Noshadi ◽  
Michael Kircher ◽  
Gisela Guthausen ◽  
Thomas Oerther ◽  
...  

AbstractRadiofrequency ablation is the gold standard for treating cardiac arrhythmias. However, the success rate of this procedure depends on numerous parameters. Wet lab experiments provide the opportunity to investigate cardiac electrophysiology under reproducible conditions. To evaluate the electrophysiological changes of ablated myocardium in these studies it is necessary to consider the three-dimensional (3D) geometry of the lesions. For this purpose, we investigated the usage of different magnetic resonance imaging (MRI) sequences as well as an image processing procedure to analyze in-vitro preparations. To differentiate signal intensities between nonablated and ablated tissue we evaluated FISP (fast imaging with steady-state precession; delivering dominantly T1-weighted images) and RARE (rapid acquisition with relaxation enhancement; delivering dominantly T2-weighted images). After image processing, the ablated tissue was segmented in each image slice forming a 3D volume. The geometry of the lesion was modeled by the boundary of this volume. It was generally feasible to distinguish between healthy myocardium and ablated tissue as well as to determine lesion transmurality. The analysis of the reconstructed lesion geometries from FISP and RARE MRI showed a high agreement, however T2-weighted sequences showed larger lesion volumes as well as higher variations in segmentation compared to T1- mapping. FISP with higher quality may be used to reconstruct the 3D geometry of the ablation lesions.


2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Felix Güttler ◽  
Andreas Heinrich ◽  
Peter Krauß ◽  
Jonathan Guntermann ◽  
Maximilian de Bucourt ◽  
...  

The purpose of this study was to evaluate the suitability of a novel radio-frequency identification (RFID)-based tracking system for intraoperative magnetic resonance imaging (MRI). A RFID tracking system was modified to fulfill MRI-compatibility and tested according to ASTM and NEMA. The influence of the RFID tracking system on MRI was analyzed in a phantom study using a half-Fourier acquisition single-shot turbospin echo (HASTE) and true fast imaging with steady-state precession sequence (TrueFISP) sequence. The RFID antenna was gradually moved closer to the isocenter of the MR scanner from 90 to 210 cm to investigate the influence of the distance. Furthermore, the RF was gradually changed between 865 and 869 MHz for a distance of 90 cm, 150 cm, and 210 cm to the isocenter of the magnet to investigate the influence of the frequency. The specific spatial resolution was measured with and without a permanent line of sight (LOS). After the modification of the reader, no significant change of the signal-to-noise ratio (SNR) could be observed with increasing distance of the RFID tracking system to the isocenter of the MR scanner. Also, different radio frequencies of the RFID tracking system did not influence the SNR of the MR-images significantly. The specific spatial resolution deviated on average by 8.97 ± 7.33 mm with LOS and 11.23 ± 12.03 mm without LOS from the reference system. The RFID tracking system had no relevant influence on the MR-image quality. RFID tracking solved the LOS problem. However, the spatial accuracy of the RFID tracking system has to be improved for medical usage.


2015 ◽  
Vol 74 (6) ◽  
pp. spcone-spcone ◽  
Author(s):  
Yun Jiang ◽  
Dan Ma ◽  
Nicole Seiberlich ◽  
Vikas Gulani ◽  
Mark A. Griswold

Sign in / Sign up

Export Citation Format

Share Document