trichoid sensilla
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 66 (4) ◽  
Author(s):  
Kseniia Abu Diiak ◽  
Mikhail Valuyskiy ◽  
Stanislav Melnitsky ◽  
Vladimir Ivanov

Structure and distribution of antennal sensilla were studied in males of 19 species of the caddisfly family Hydropsychidae by using scanning electron microscopy (SEM). Eleven types of sensilla were found: long trichoid, chaetoid, thick chaetoid, curved trichoid, coronary, basiconic, styloconic and four types of pseudoplacoid sensilla (mushroom-like, auricillic, ribbed, and T-shaped). Thick chaetoid, ribbed pseudoplacoid, and T-shaped pseudoplacoid sensilla were found only in Macronematinae. The great diversity of pseudoplacoid sensilla originated from a mushroom-like type, which also has a variable structure. Basal flagellomeres in the majority of studied species are equipped with ventrally positioned sensory fields of curved trichoid sensilla. In contrast to Arctopsychinae and Hydropsychinae, the increased number of these sensilla in the fields was noted for Diplectroninae and Smicrideinae. Most Macronematinae show a reduction of sensory fields and a strongly decreased average number of curved trichoid sensilla on distal segments. The great differences found in the studied family probably indicate a rapid function-related evolution of the antennal sensory surface structures in the caddisfly family Hydropsychidae.


2020 ◽  
Vol 11 ◽  
Author(s):  
Harald Tichy ◽  
Marlene Linhart ◽  
Alexander Martzok ◽  
Maria Hellwig

Slow and continuous changes in odor concentration were used as a possible easy method for measuring the effect of the instantaneous concentration and the rate of concentration change on the activity of the olfactory receptor neurons (ORNs) of basiconic sensilla on the cockroach antennae. During oscillating concentration changes, impulse frequency increased with rising instantaneous concentration and this increase was stronger the faster concentration rose through the higher concentration values. The effect of the concentration rate on the ORNs responses to the instantaneous concentration was invariant to the duration of the oscillation period: shallow concentration waves provided by long periods elicited the same response to the instantaneous concentration as steep concentration waves at brief periods. Thus, the double dependence remained unchanged when the range of concentration rates varied. This distinguishes the ORNs of basiconic sensilla from those of trichoid sensilla (Tichy and Hellwig, 2018) which adjust their gain of response according to the duration of the oscillating period. The precision of the ORNs to discriminate increments of slowly rising odor concentration was studied by applying gradual ramp-like concentration changes at different rates. While the ORNs of the trichoid sensilla perform better the slower the concentration rate, those of the basiconic sensilla show no preference for a specific rate of concentration increase. This suggests that the two types of sensilla have different functions. The ORNs of the trichoid sensilla may predominately analyze temporal features of the odor signal and the ORNs of the basiconic sensilla may be involved in extracting information on the identity of the odor source instead of mediating the spatial-temporal concentration pattern in an odor plume.


2016 ◽  
Vol 106 (6) ◽  
pp. 781-789 ◽  
Author(s):  
X. Sun ◽  
Z.-F. Zhao ◽  
F.-F. Zeng ◽  
A. Zhang ◽  
Z.-X. Lu ◽  
...  

AbstractPheromone-binding proteins (PBPs) are believed to be involved in the recognition of semiochemicals. In the present study, western blot analysis, fluorescence-binding characteristics and immunolocalization of CmedPBP4 from the rice leaffolder, Cnaphalocrocis medinalis, were investigated. Western blot analysis revealed that CmedPBP4 showed obvious antenna-specific expression patterns in female and male antenna, and made a clearly different sex-biased expression. Immunocytochemical labeling revealed that CmedPBP4 showed specific expression in the trichoid sensilla. Competitive fluorescence binding assays indicated that CmedPBP4 could selectively recognize three sex pheromone components (Z13-18:Ac, Z11-16:Al and Z13-18:OH) and eleven rice plant volatiles, including cyclohexanol, nerolidol, cedrol, dodecanal, ionone, (−)-α-cedrene, (Z)-farnesene, β-myrcene, R-(+)-limonene, (−)-limonene, and (+)-3-carene. Meanwhile the CmedPBP4 detection of sex pheromones and host odorants was pH-dependent. Our results, for the first time, provide further evidence that trichoid sensilla might be play an important role in detecting sex pheromones and host plant volatiles in the C. medinalis moth. Our systematic studies provided further detailed evidence for the function of trichoid sensilla in insect semiochemical perception.


2014 ◽  
Vol 64 (4) ◽  
pp. 365-381 ◽  
Author(s):  
Thiago J.S. Alves ◽  
Valéria Wanderley-Teixeira ◽  
Álvaro A.C. Teixeira ◽  
Christian S.A. Silva-Torres ◽  
José B. Malaquias ◽  
...  

Parasitoids have evolved mechanisms to evade their hosts’ defenses. Bracon vulgaris (Ashmead) is a larval ectoparasitoid responsible for natural reduction of Anthonomus grandis (Boheman) and Pectinophora gossypiella (Saunders), which are considered the main cotton pests in the cotton agro-ecosystem in northeastern Brazil. This study aimed to analyze the sensory structures (antennae and ovipositor) involved in the parasitism behavior of B. vulgaris, and to describe and evaluate associations between composition, morphology, and functions of these structures in the parasitoid-host interaction. Results showed that the B. vulgaris ovipositor is a multifunctional structure of 2.7 ± 0.3 mm in length composed of 3 valves. Valves 1 and 2 are elongated, rigid, and act jointly to pierce the host’s cuticle, to inject the poison glands secretion, and to deposit eggs. Valve 3 covers the other valves, giving them protection. Valve 3 also presents annulations in all its extension, which gives flexibility to the ovipositor, and trichoid sensilla that possibly capture vibrations from the host’s feeding and locomotion, thereby aiding the parasite in the host selection. The presence of cuticular microtrichia was possibly responsible for the cleaning of the ovipositor, keeping it functional between the various insertions that occur during the parasitism behavior. The parasitoid’s antennae are filliform-like, measure about 2 mm, and are composed of four types of sensilla (trichoids, basiconical, coeloconical, and placodes) that act as olfactory and gustatory receptors and/or express tactile, thermo,- and hygroreception functions. The integrated action of these sensory components corroborates the successful parasitism behavior of the parasitoid B. vulgaris.


Sign in / Sign up

Export Citation Format

Share Document