basiconic sensilla
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Genting Liu ◽  
Qike Wang ◽  
Xianhui Liu ◽  
Xinyu Li ◽  
Xiunan Pang ◽  
...  

AbstractAntennae and maxillary palps are the most important chemical reception organs of flies. So far, the morphology of antennae and maxillary palps of flies of most feeding habits have been well described, except for that of relatively rare aquatic predatory species. This study describes sensilla on antennae and maxillary palps of three aquatic predatory Lispe species: Lispe longicollis, L. orientalis and L. pygmaea. Types, distribution, and density of sensilla are characterised via light and scanning electron microscopy. One type of mechanoreceptors is found on antennal scape. Mechanoreceptors (two subtypes) and one single pedicellar button (in L. pygmaea) are located on antennal pedicel. Four types of sensilla are discovered on antennal postpedicel: trichoid sensilla, basiconic sensilla (three subtypes), coeloconic sensilla and clavate sensilla. A unique character of these Lispe species is that the coeloconic sensilla are distributed sparsely on antennal postpedicel. Mechanoreceptors and basiconic sensilla are observed on the surface of maxillary palps in all three species. We demonstrated clear sexual dimorphism of the maxillary palps in some of the Lispe species, unlike most other Muscidae species, are larger in males than females. This, along with their courtship dance behaviour, suggest their function as both chemical signal receiver and visual signal conveyer, which is among the few records of a chemical reception organ act as a signal conveyer in insects.


2020 ◽  
Vol 11 ◽  
Author(s):  
Harald Tichy ◽  
Marlene Linhart ◽  
Alexander Martzok ◽  
Maria Hellwig

Slow and continuous changes in odor concentration were used as a possible easy method for measuring the effect of the instantaneous concentration and the rate of concentration change on the activity of the olfactory receptor neurons (ORNs) of basiconic sensilla on the cockroach antennae. During oscillating concentration changes, impulse frequency increased with rising instantaneous concentration and this increase was stronger the faster concentration rose through the higher concentration values. The effect of the concentration rate on the ORNs responses to the instantaneous concentration was invariant to the duration of the oscillation period: shallow concentration waves provided by long periods elicited the same response to the instantaneous concentration as steep concentration waves at brief periods. Thus, the double dependence remained unchanged when the range of concentration rates varied. This distinguishes the ORNs of basiconic sensilla from those of trichoid sensilla (Tichy and Hellwig, 2018) which adjust their gain of response according to the duration of the oscillating period. The precision of the ORNs to discriminate increments of slowly rising odor concentration was studied by applying gradual ramp-like concentration changes at different rates. While the ORNs of the trichoid sensilla perform better the slower the concentration rate, those of the basiconic sensilla show no preference for a specific rate of concentration increase. This suggests that the two types of sensilla have different functions. The ORNs of the trichoid sensilla may predominately analyze temporal features of the odor signal and the ORNs of the basiconic sensilla may be involved in extracting information on the identity of the odor source instead of mediating the spatial-temporal concentration pattern in an odor plume.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shuke Xiao ◽  
Jennifer S Sun ◽  
John R Carlson

Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.


2016 ◽  
Vol 113 (49) ◽  
pp. 14091-14096 ◽  
Author(s):  
Sean K. McKenzie ◽  
Ingrid Fetter-Pruneda ◽  
Vanessa Ruta ◽  
Daniel J. C. Kronauer

A major aim of sociogenomic research is to uncover common principles in the molecular evolution of sociality. This endeavor has been hampered by the small number of specific genes currently known to function in social behavior. Here we provide several lines of evidence suggesting that ants have evolved a large and novel clade of odorant receptor (OR) genes to perceive hydrocarbon-based pheromones, arguably the most important signals in ant communication. This genomic expansion is also mirrored in the ant brain via a corresponding expansion of a specific cluster of glomeruli in the antennal lobe. We show that in the clonal raider ant, hydrocarbon-sensitive basiconic sensilla are found only on the ventral surface of the female antennal club. Correspondingly, nearly all genes in a clade of 180 ORs within the 9-exon subfamily of ORs are expressed exclusively in females and are highly enriched in expression in the ventral half of the antennal club. Furthermore, we found that across species and sexes, the number of 9-exon ORs expressed in antennae is tightly correlated with the number of glomeruli in the antennal lobe region innervated by odorant receptor neurons from basiconic sensilla. Evolutionary analyses show that this clade underwent a striking gene expansion in the ancestors of all ants and slower but continued expansion in extant ant lineages. This evidence suggests that ants have evolved a large clade of genes to support pheromone perception and that gene duplications have played an important role in the molecular evolution of ant communication.


2009 ◽  
Vol 141 (5) ◽  
pp. 463-477 ◽  
Author(s):  
Zongbo Li ◽  
Pei Yang ◽  
Yanqiong Peng ◽  
Darong Yang

AbstractFig-pollinating wasps are phytophagous wasps that mainly use olfaction to locate their fig (Ficus L., Moraceae) hosts. To provide a morphological framework for studying agaonid olfaction, we examined the antennal sensilla of female Ceratosolen solmsi marchali Mayr by scanning and transmission electron microscopy. We identified and characterized (ultrastructure, distribution, abundance, and position) 13 types of sensilla: multiporous placoid sensilla (types 1 and 2), basiconic sensilla (types 1 and 2), basiconic capitate peg sensilla, sensilla chaetica (types 1–3), sensilla trichodea, sensilla coeloconica (types 1–3), and one specialized sensillum regarded as a sensillum obscurum. We suggest that five types are chemoreceptors because they are porous and innervated by multiple sensory neurons. Sensilla coeloconica type 1 may also function as chemoreceptors, based on external morphology. Other sensilla may be involved in mechanoreception, thermo- and (or) hygro-reception, or pressure detection. We discuss our results in relation to the lifestyle of C. solmsi marchali.


2009 ◽  
Vol 102 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Julia Schuckel ◽  
Päivi H. Torkkeli ◽  
Andrew S. French

We measured frequency response functions between concentrations of fruit odorants and individual action potentials in large basiconic sensilla of the Drosophila melanogaster antenna. A new method of randomly varying odorant concentration was combined with rapid, continuous measurement of concentration at the antenna by a miniature photoionization detector. All frequency responses decreased progressively at frequencies approaching 100 Hz, providing an upper limit for the dynamics of Drosophila olfaction. We found two distinct response patterns: excitatory band-pass frequency responses were seen with ethyl acetate, ethyl butyrate, and hexanol, whereas inhibitory low-pass responses were seen with methyl salicylate and phenylethyl acetate. Band-pass responses peaked at 1–10 Hz. Frequency responses could be well fitted by simple linear filter equations, and the fitted parameters were consistent within each of the two types of responses. Experiments with equal mixtures of excitatory and inhibitory odorants gave responses that were characteristic of the inhibitory components, indicating that interaction during transduction causes inhibitory odorants to suppress the responses to excitatory odorants. Plots of response amplitude versus odorant concentration indicated that the odorant concentrations used were within approximately linear regions of the dose response relationships. We also estimated linear information capacity from the coherence function of each recording. Although coherence was relatively high, indicating a large signal-to-noise ratio, information capacity for olfaction was much lower than comparable estimates for mechanotransduction or visual transduction because of the limited bandwidth of olfaction. These data offer new insights into transduction by primary chemoreceptors and place temporal constraints on Drosophila olfactory behavior.


Zootaxa ◽  
2007 ◽  
Vol 1544 (1) ◽  
pp. 59-68 ◽  
Author(s):  
NA LI ◽  
BING-ZHONG REN ◽  
MIAO LIU

The types, numbers and distributions of antennal sensilla were studied in both male and female adults of eight Acrididae species in Northeast China using scanning electron microscope (SEM). Totally, there were thirteen types of sensilla found on the antennae. They were identified as trichoid sensilla (I, II), chaetic sensilla (I, II), basiconic sensilla (I, II, III, IV, V), cavity sensilla, coeloconic sensilla, boehm's bristles and paddle-shaped sensilla. The types of antennal sensilla in each Acrididae species ranged from nine to twelve. Each of the species had the same types of antennal sensilla in male and female, and males had more abundant basiconic sensilla, chaetic sensilla, coeloconic sensilla, cavity sensilla than females. Acrida cinerca had the largest total numbers of sensilla, and Euthystria lueifemora had the fewest. Boehm's bristles had a concentration in the base of the pedicel. Paddle-shaped sensilla had a concentration in the base of the scape. There were significant differences in the distribution of the other eleven types of sensilla.


1999 ◽  
Vol 82 (6) ◽  
pp. 3149-3159 ◽  
Author(s):  
Philip L. Newland

Despite the importance of gustation, little is known of the central pathways responsible for the processing and coding of different chemical stimuli. Here I have analyzed the responses of a population of spiking local interneurons, with somata at the ventral midline of the metathoracic ganglion, during stimulation of chemo- and mechanoreceptors on the legs of locusts. Volatile acidic stimuli were used to selectively activate the chemosensory neurons. Different members of the population of local interneurons received depolarizing or hyperpolarizing inputs during chemosensory stimulation. Many of the same interneurons that received chemosensory input also received mechanosensory inputs from tactile hairs on the leg, but others received exclusively mechanosensory inputs. Chemosensory inputs occurred with a short and constant latency, typical of monosynaptic connections. The chemosensory receptive fields of the spiking local interneurons mapped the surface of a hind leg so that spatial information relating to the location of a taste receptor was preserved. The amplitude of potentials in interneurons during chemosensory stimulation varied in a graded manner along the long axis of the leg, thus creating gradients in the chemosensory receptive fields of interneurons. Some interneurons were depolarized to a greater extent by chemical stimuli applied to basiconic sensilla on distal parts of the leg, whereas others were depolarized more by chemical stimulation of more proximal sensilla.


1999 ◽  
Vol 77 (2) ◽  
pp. 302-313 ◽  
Author(s):  
VDC Shields ◽  
J G Hildebrand

The antennal flagellum of the female sphinx moth, Manduca sexta, bears eight types of sensilla: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex. We previously described the fine structure of the trichoid and basiconic sensilla (Shields and Hildebrand 1999). In this paper, we describe one type of auriculate, two types of coeloconic, and one type of styliform complex sensilla. The auriculate (ear- or spoon-shaped) sensillum is a small peg that averages 4 µm in length, is innervated by two bipolar sensory cells, and has structural features characteristic of an insect olfactory sensillum. Each of the two types of coeloconic sensilla is a small peg that averages 2 µm in length and is recessed in a cuticular pit. One type of coeloconic sensillum is innervated by five bipolar sensory cells and has structural features characteristic of an insect olfactory sensillum or olfactory-thermosensillum, while the other is innervated by three bipolar sensory cells and has structural features characteristic of an insect thermo-hygrosensillum. The styliform complex sensillum is a large peg that averages 38-40 µm in length and is formed by several contiguous sensilla, the number of which depends on the location of the peg on the flagellum. Each unit of the styliform complex sensillum is innervated by three bipolar sensory cells and has structural features characteristic of a thermo-hygrosensillum. We also ascertained the number and distribution of each of the eight types of sensilla on a single flagellomere (annulus) about midway along the flagellum of a female antenna. A total of 2216 sensilla were found on the dorsal, ventral, and leading surfaces of that annulus.


Sign in / Sign up

Export Citation Format

Share Document