lug joints
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2019 ◽  
Vol 10 (6) ◽  
pp. 809-824
Author(s):  
Bharath Kenchappa ◽  
Lokamanya Chikmath ◽  
Bhagavatula Dattaguru

Purpose Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and progressing from these types of joints. Ensuring the structural integrity of these fastener joints is a major issue in many engineering structures, especially in aerospace components, which would otherwise lead to fatal failure. The purpose of this paper is to adopting the prognostic approach for analysing these lug joints with fasteners subjected to off-axis loading by estimating the crack initiation and crack growth life of these joints. This data will be useful to estimate the remaining life of these joints at any given stage of operations, which is mandatory in structural health monitoring (SHM). Design/methodology/approach Straight and tapered lug joints are modelled using the finite element method in MSC PATRAN and analysed in MSC NASTRAN. These lug joints are analysed with a push fit fastener. The contact/separation regions at the pin–lug interface are carefully monitored throughout the analysis for various loading conditions. Critical locations in these lug joints are identified through stress analysis. Fatigue crack initiation and fatigue crack growth analysed is carried out at these locations for different load ratios. A computational method is proposed to estimate the cycles to reach crack initiation and cycles at which the crack in the lug joint become critical by integrating several known techniques. Findings Analysis carried out in this paper describes the importance of tapered lug joints, particularly when subjected to non-conventional way of loading, i.e. off-axis loading. There is a partial loss of contact between pin and lug upon pin loading, and this does not change further with monotonically increasing pin load. But during load reversals, there is a change in contact/separation regions which is effectively handled by inequality constraints in the boundary conditions. Crack growth in these lug joints pertains to mixed-mode cracking and is computed through the MVCCI technique. Originality/value Most of the earlier works were carried out on in-plane pin loading along the axis of symmetry of the lug. The current work considers the off-axis pin loading by loading the lug joints with transverse and oblique pin load. The significance of taper angle under such loading condition is brought in this paper. The results obtained in this paper through prognostic approach are of direct relevance to the SHM and damage tolerance design approach where the safety of the structural components is of foremost priority.


2017 ◽  
Vol 8 (3) ◽  
pp. 404-422 ◽  
Author(s):  
L. Chikmath ◽  
B. Dattaguru

Purpose Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using the recently emerging structural health monitoring (SHM) systems, continuous monitoring needs be carried out at many major joint locations. The purpose of this paper is to develop computational techniques for fastener joints, including the possible change in contact conditions and change in boundary values at the pin-hole interface. These techniques are used for the prognostic analysis of pin-loaded lug joints with rigid/elastic pin subjected to fatigue loading by estimating the residual life of the component at any given instance to assist the SHM systems. Design/methodology/approach Straight attachment lug joints with rigid/elastic push-fit pin and smooth pin-hole interface are modelled in commercial software MSC PATRAN. In each case, the joint is subjected to various types of fatigue load cycles, and for each type of cycles, the critical locations and the stress concentrations are identified from the stress analysis. Later, for each type of fatigue cycle, the number of cycles required for crack initiation is estimated. A small crack is located at these points, and the number of cycles required to reach the critical length when unstable crack growth occurs is also computed. The novelty in the analysis of life estimations is that it takes into account possible changes in contact conditions at the pin-hole interface during load reversals in fatigue loading. Findings The current work on fastener joints brings out the way the load reversals leading to change in contact conditions (consequently changing boundary conditions) are handled during fatigue loading on a push-fit joint. The novel findings are the effect of the size of the hole/lug width, elasticity of the material and the type of load cycles on the fatigue crack initiation and crack growth life. Given other parameters constant, bigger size hole and stiffer pin lead to lesser life. Under load controlled fatigue cycles, pull load contributes to significant part of fatigue life. Originality/value The analysis considers the changing contact conditions at the pin-hole interface during fatigue cycles with positive and negative stress ratios. The results presented in this paper are of value to the life prediction of structural joints for various load cycles (for both pull-pull cases, in which the load ratios are positive, and pull-push cycles, where the load ratios are negative). The prognostic data can be used to effectively monitor the critical locations with joints for SHM applications.


2014 ◽  
Vol 670-671 ◽  
pp. 1068-1072
Author(s):  
Chao Liu ◽  
Qin Sun ◽  
Yan Jie Liu

In the aeronautic field, ductile structure usually undergoes local fracture under complicated service loading conditions, which may triggers collapse of a structure. As a result, it is very essential to study the mechanism of fracture initiation and propagation of ductile materials especially under complex stress states. In this paper, a comparative study of fracture patterns of a load-bearing lug joints structure under several loading conditions with two ductile fracture models is performed by using the commercial finite element platform ABAQUS/ Explicit through a user material subroutine VUMAT. The numerical comparisons using two ductile fracture models in predicting failure of load-bearing lug joints structure shows that modified X-W fracture model agrees well with the experimental observation under complex stress states.


2009 ◽  
pp. 598-598-15
Author(s):  
RV Prakash ◽  
KN Raju ◽  
K Satish Kumar ◽  
B Dattaguru ◽  
TS Ramamurthy

2008 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Wahyu Kuntjoro ◽  
Ibrahim Bahari ◽  
Abdul Ghani Ujang ◽  
Assanah Mohd Mydin

The Royal Malaysian Airforce (RMAF) operates one squadron of MiG-29 which were designed on Safe Life principle. RMAF conducts a fatigue life monitoring program to these airplanes. This activity is conducted based on the experience of having the fatigue life monitoring program to the RMAF F/A-18D. The fatigue life of RMAF MiG-29 is based on the wing-fuselage lug joint structure, and Low Cycle Fatigue (LCF) approach is adopted. The stress spectra of this component, is derived through mapping of g-spectra to the 1-g stress level of the lug. The g-history is obtained from the accelerator installed in the airplane, while the 1-g stress level is obtained by finite element modeling of the wing structure and lug joints. Rainflow cycle counting procedure was then applied. The fatigue characteristics (strain-life) of the lug material was obtained from the laboratory test, using the lug material sample, combined with the empirical formula of strain-life diagram. Notched effect is taken into account using Neuber theory. Mean stress effect is dealt with using Smith-Watson-Topper formula. Miner’s rule is used to calculate the fatigue damage accumulation. A fatigue life prediction software for RMAF MiG-29 which incorporates the above concepts had been developed. Currently, this software is operational with the RMAF MiG-29, and is being used as part of its Aircraft Structural Integrity Program (ASIP). This paper reports on the development of the fatigue life monitoring strategy and software for the RMAF MiG-29.


Sign in / Sign up

Export Citation Format

Share Document