spin effect
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
G. R. Sridhara ◽  
H. C. Manjunatha ◽  
N. Sowmya ◽  
P. S. Damodara Gupta

In this paper, we have made an attempt to analyze the alpha-decay half-lives of in the atomic number range [Formula: see text] by considering an effective liquid drop model. The role of pre-formation probability by including iso-spin effect is included during an evaluation of half-lives. We have also compared the studied alpha-decay half-lives with that of semi-empirical formulae such as Viola Seaborg semi-empirical formulae (VSS) [J. Inorg. Nucl. Chem. 28 (1966) 741; Nucl. Phys. A 848 (2010) 279], Royer formulae [J. Phys. G: Nucl. Part. Phys. 26 (2000) 1149; Phys. Rev. C 101 (2020) 034307] and also with that of the available experiments. From this comparison, it can be concluded that the effective liquid drop model produces an alpha-decay half-lives close to the experiments.


Author(s):  
Mohamed R. Eid ◽  
Mohammed A. Ali ◽  
Ahmed F. Al-Hossainy

Abstract Doped zirconium oxide nanoparticles [ZrO2]NPs in the [PEG–H2O] and [TiO2]NPs in the [PEG–H2O/ZrO2]C matrices to fabricated the [PEG–H2O/ZrO2+TiO2]h hybrid nanofluid films by a sol–gel method, the average crystallite size is 100 ± 5 nm. The nanofluid and hybrid nanofluid thin films are studied using combined experimental and DFT theoretical method (DMOl3), including FTIR spectrum and optical properties. Mathematically, Higher rate of reactions of rotating [PEG/H2O–ZrO2]m, and [PEG–H2O/ZrO2+TiO2]h nanofluids on an extending sheet is considered with thermal radiation and heat source. The numerical Runge–Kutta–Fehlberg of 4–5th order (RKF45) method is used to solve the issue. The results specifically determine that Δ E g Opt ${\Delta}{E}_{g}^{\text{Opt}}$ values decrease from 2.27 eV for [PEG–H2O/ZrO2]m mono nanofluid to 1.596 eV for [PEG–H2O/ZrO2+TiO2]h hybrid nanofluid using the DFT computations HOMO and LUMO calculation. This result concluded that the [PEG–H2O/ZrO2]m transformed from semiconductor to [PEG–H2O/ZrO2+TiO2]h as a superconductor hybrid nanofluid by addition [TiO2]NPs. The hybrid nanoparticles have a higher influence than nanoparticles on the velocity distributions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianze Wu ◽  
Xiao Ren ◽  
Yuanmiao Sun ◽  
Shengnan Sun ◽  
Guoyu Xian ◽  
...  

AbstractProducing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER, to manipulate the spin ordering of ferromagnetic OER catalysts (e.g., by magnetization) can reduce the kinetic barrier. However, most active OER catalysts are not ferromagnetic, which makes the spin manipulation challenging. In this work, we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning, simple magnetization further increases the spin alignment and thus the OER activity, which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.


Author(s):  
Changdong Zheng ◽  
Ke Jiang ◽  
Kailun Yao ◽  
Sicong Zhu ◽  
Kaiming Wu

Two-dimensional black arsenic-phosphorus (bAsP) doped with Ni atoms exhibits half-metallic properties. The device based on doped bAsP shows a perfect spin effect, and its tunnel magnetoresistance is up to 4 × 105%.


2020 ◽  
Vol 62 (1) ◽  
pp. 52-70
Author(s):  
M. Derras ◽  
N. Hamdad

AbstractAb initio calculations of BiFeO3 magnetic perovskite are carried. Accurate density functional theory calculations were performed considering a U-Hubbard correction (DFT+U) to account for on-site Coulomb interactions of the 3d-Fe states. We have applied the Full-potential linearized augmented plane waves (FP-LAPW) method. Exchange-correlation effects are treated using the Local Spin Density approximation (L(S)DA+U) vs generalized gradient approximations (GGA+U). Equilibrium lattices agree very well with other theoretical and experimental data. The magnetization energy differences between Spin Up and Spin Dn states are small. Spin effect and magnetic moment obtained from subsequent (L(S)DA+U) and (GGA+U) calculations are also discussed in different magnetic configurations: The Ferromagnetic cubic phase (Pm-3m), The A-type Antiferromagnetic (P4/mmc) and The G-type Antiferromagnetic (Fm-3m). The nature of magnetism arises mainly from the Fe-site exhibiting a G-type antiferromagnetic ordering. The electronic structure shows that BiFeO3 has a metallic band gap. This multiferroic exhibit strong hybridization of the 3d-Fe and 2p-O orbitals. Therefore, the Multiferroic BiFeO3 perovskite has driven significant research interest due to their promising technological potential. It’s a good candidate for potential applications in spintronic, and to aid the development of the next generation of data storage and multi-functional technological devices.


Sign in / Sign up

Export Citation Format

Share Document