ambient noise level
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
I Nyoman Gede Suyasa ◽  
◽  
Ni Made Marwati ◽  
Ni Ketut Rusminingsih

The imbalance number of rapid vehicles with transportation facilities has become the problem. In Denpasar, Indonesia, the congestion during peak hours happens so often. Based on the department of transportation in Denpasar, Indonesia, the number of vehicle ownership in Bali is 4.1 million in condition with a ratio of one resident to one vehicle with the current population of Bali Province approximately 4.2 million. Our study aim to measure the air chemical parameters of CO, O3, SO2, NO2 and the physical parameters of the noise level. The research population is the atmosphere environment in the Denpasar City area. The research sample points were taken in the city center and the outskirts of Denpasar, with a total of 27 sample points. We employed impinge to get the airborne chemical gases and it is all analyzed with a spectrophotometer. We used a sound level meter to measure the ambient noise level. The data analysis was performed with free sample t test. The average ambient air chemistry obtained CO 517.34 µgr/Nm3, O3 0.17 µgr/Nm3, SO2 61.46 µgr/Nm3 and NO2 2.51 µgr/Nm3 and an average noise level 67.66 dBA. The number has found below the requirements Environmental Quality Standards and Environmental Damage Standard Criteria by Bali Governor. There is a difference in the mean parameters of CO, SO2, NO2 and ambient noise level in the downtown area. The average CO is 757.15 µgr/Nm3, SO2 67.60 µgr/Nm3, NO2 3.77 µgr/Nm3 and the noise level is 68.53 dBA with Denpasar outskirts mean CO 217.57 µgr/Nm3, SO2 53.79 µgr/Nm3, NO2 0.95 µgr/Nm3 and noise level 66.57 dBA. There is no difference in the average ambient O3 in the city center area with an average of 0.22 µgr/Nm3 with the outskirts of Denpasar an average of 0.11 µgr/Nm3.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
R C Leaper ◽  
M R Renilson

The paper provides an interesting and rather complete overview of the reasons for reducing shipping noise and the possible ways to achieve this. It is in particular interesting to note that the majority of noise impact is probably caused by the noisiest 10% of ships, and that the ambient noise level in the oceans increased by around 20 dB compared to pre-industrial conditions.


2021 ◽  
Author(s):  
I Nyoman Gede Suyasa ◽  
Ni Made Marwati ◽  
Ni Ketut Rusminingsih

The imbalance number of rapid vehicles with transportation facilities has become the problem. In Denpasar, Indonesia, the congestion during peak hours happens so often. Based on the department of transportation in Denpasar, Indonesia, the number of vehicle ownership in Bali is 4.1 million in condition with a ratio of one resident to one vehicle with the current population of Bali Province approximately 4.2 million. Our study aim to measure the air chemical parameters of CO, O3, SO2, NO2 and the physical parameters of the noise level. The research population is the atmosphere environment in the Denpasar City area. The research sample points were taken in the city center and the outskirts of Denpasar, with a total of 27 sample points. We employed impinge to get the airborne chemical gases and it is all analyzed with a spectrophotometer. We used a sound level meter to measure the ambient noise level. The data analysis was performed with free sample t test. The average ambient air chemistry obtained CO 517.34 µgr/Nm3, O3 0.17 µgr/Nm3, SO2 61.46 µgr/Nm3 and NO2 2.51 µgr/Nm3 and an average noise level 67.66 dBA. The number has found below the requirements Environmental Quality Standards and Environmental Damage Standard Criteria by Bali Governor. There is a difference in the mean parameters of CO, SO2, NO2 and ambient noise level in the downtown area. The average CO is 757.15 µgr/Nm3, SO2 67.60 µgr/Nm3, NO2 3.77 µgr/Nm3 and the noise level is 68.53 dBA with Denpasar outskirts mean CO 217.57 µgr/Nm3, SO2 53.79 µgr/Nm3, NO2 0.95 µgr/Nm3 and noise level 66.57 dBA. There is no difference in the average ambient O3 in the city center area with an average of 0.22 µgr/Nm3 with the outskirts of Denpasar an average of 0.11 µgr/Nm3.


Author(s):  
Weilai Wang ◽  
Guangyao Cai ◽  
Guijuan Lai ◽  
Mingfei Chen ◽  
Long Zhang

Abstract High-frequency (>1  Hz) ambient noise is usually closely related to anthropogenic activities. During the outbreak and spread of the COVID-19, as various anthropogenic activities are restricted, high-frequency ambient noise level has been observed to be reduced on a worldwide scale. The continuous waveform data at dense broadband seismic stations from ChinArray in eastern North China provides a good opportunity to study the temporal and spatial patterns of the ambient noise level in the region, and to further study the influencing factors, such as the topography and the population density. In this study, we calculated the average power spectral density of ambient noise at each station ±90 days around the Spring Festival in 2019 and in 2020, analyzed the noise level at different stations through normal times, Spring Festivals, epidemic control period, and recovery period, and studied the influencing factors of the noise level. We found that normally high-frequency (1–10 Hz) ambient noise correlates well with the surrounding sedimentary thickness: The noise level is higher when the surrounding sedimentary layer is thicker and vice versa. It correlates moderately with local population density and is time-varying due to anthropogenic activities. During the Spring Festival in 2019 and in 2020, and the epidemic control period after the Spring Festival in 2020, the reduction extent of the noise level correlates moderately with both the sedimentary thickness and population density; the ambient noise level reduces more significantly to the south of 40° N than to the north of it in the study region. Considering that the sedimentary thickness beneath each station is not time-varying, the variation in ambient noise level due to anthropogenic activities is clearly amplified by the sedimentary layer.


2021 ◽  
Vol 1 (1) ◽  
pp. 17-21
Author(s):  
Endah Puspita Sari ◽  
Melda Panjaitan ◽  
Hery Sunandar ◽  
Erida Wati

The time-series approach is commonly utilized to get to the estimation of the likelihood thickness work of control ghostly densities (PDF PSD) of waveform information. This paper is concerned with the introduction of the evaluation of waveform commotion to degree the likelihood thickness work (PDF) be done inside, we utilized the metadata from a stock, a parser occurrence of DNP (Denpasar, Bali, Indonesia), IGBI (Ingas, Bali, Indonesia), and PLAI (Plampang, NTB, Indonesia) from BMKG IA-Networks and computations are based on the schedule utilized by McNamara Demonstrate. The point of this paper to characterize the current and past execution of the stations and recognizing the data on clamor levels at BMKG IA-Networks Station. The result of this paper shows the consistency of the unearthly is displayed the DNP, IGBI, and PLAI organize to confirm the quality of information conjointly acts as a test execution broadband arrange to the time taken by the broadband organize within the field and examination the Lombok earthquake in 2018.


2021 ◽  
Vol 223 ◽  
pp. 108653
Author(s):  
Sungho Cho ◽  
Sunhyo Kim ◽  
Donhyug Kang ◽  
Jisung Park

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Justin Outrey ◽  
Jean-Baptiste Pretalli ◽  
Sophie Pujol ◽  
Alice Brembilla ◽  
Thibaut Desmettre ◽  
...  

Abstract Background Noise levels are monitored in call centres. A maximum of 52 to 55 dB(A) is recommended in order to prevent adverse events. We aimed at assessing the noise level and the impact of a visual noise indicator on the ambient noise level in a French Regional Emergency Medical Dispatch Centre (EMDC). Methods We conducted an observational study in the EMDC of the SAMU25 (University Hospital of Besancon). We measured the noise level using a SoundEarII® noise indicator (Dräger Medical SAS, France). The measurement took place in two phases on three consecutive days from 00:00 to 11:59 PM. At baseline, phase 1, the device recorded the average ambient noise for each minute without visual indication. Secondly, phase 2 included a sensor mounted with a light that would turn on green if noise was below 65 dB(A), orange if noise ever exceeded 65 and red if it exceeded 75 dB(A). Results In the presence of the visual noise indicator, the LAeq was significantly lower than in the absence of visual noise indicator (a mean difference of − 4.19 dB; P < 10–3). It was higher than 55 dB(A) in 84.9 and 43.9% of the time in phases 1 and 2, respectively. Conclusions The noise levels were frequently higher than the standards, and sometimes close to recommended limits, requiring preventive measures. The noise indicator had a positive effect on the ambient noise level. This work will allow the implementation of effective prevention solutions and, based on future assessments, could improve operators’ well-being and better care for patient.


2020 ◽  
Author(s):  
Justin Outrey ◽  
Jean-Baptiste Pretalli ◽  
Sophie Pujol ◽  
Alice Brembilla ◽  
Thibaut Desmettre ◽  
...  

Abstract Background A maximum of 52 to 55 dB(A) is recommended in order to prevent adverse events in call centres. We aimed at assessing the noise level and the impact of a visual noise indicator on the ambient noise level in a French Regional Emergency Medical Dispatch Centre (EMDC). Methods We conducted an observational study in the EMDC of the SAMU25 (University Hospital of Besancon). We measured the noise level using a SoundEarII® noise indicator (Dräger Medical SAS, France). The measurement took place in two phases on three consecutive days from 00:00 to 11:59 PM. At baseline, phase 1, the device recorded the average ambient noise for each minute without visual indication. Secondly, phase 2 included a sensor mounted with a light that would turn on if noise ever exceeded 65 and 75 dB(A). Results The sound level was greater than 52 dB(A) in 97.2% and 66.8% of the time in phases 1 and 2 respectively; this level was greater than 55 dB(A) in 84.9% and 43.9% of the time in phases 1 and 2 respectively.Conclusions The noise levels were higher than recommended and sometimes close to legal limits, requiring preventive measures. The noise indicator had a positive effect on the ambient noise level. This work will allow the implementation of effective prevention solutions and, based on future assessments, could improve operators’ well-being and better care for patient.


2019 ◽  
Vol 146 (4) ◽  
pp. 2912-2912
Author(s):  
Zachary T. Jones ◽  
Mylan R. Cook ◽  
Kent L. Gee ◽  
Mark K. Transtrum ◽  
Matthew F. Calton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document