zenith total delay
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 936 (1) ◽  
pp. 012001
Author(s):  
Eko Yuli Handoko ◽  
Akbar Kurniawan ◽  
Putra Maulida ◽  
Norma Aji Cemara

Abstract The Global Navigation Satellite System is being developed as an atmospheric remote sensing system through the calculation of Zenith Total Delay. The development of the Continous Operating Reference Station encourages research investigations into Zenith Tropospheric Delay with continuous data and good spatial resolution. This research studies the characteristics of spatial and temporal variations of the Zenith Wet Delay in East Jawa. The case study in East Jawa Province uses 16 Continous Operating Reference Stations. As a comparison, meteorological data from the Badan Meteorologi, Klimatologi, and Geofisika stations are used.The Zenith Total Delay and Zenith Wet Delay values from the Continous Operating Reference Station data are calculated using GIPSY 6.4 Software. The Zenith Wet Delay values are gridded using the kriging method with the size of the grids being 0,25 x 0,25. The ZWD value comparison from the Continous Operating Reference Station and meteorology data has a strong correlation with a coefficient value of 0,712. The mean of Zenith Wet Delay’s trend is increasing by about 0,712 mm/yr. The characteristics of the spatial and temporal variations of the ZWD value are influenced by the monsoon of Asia-Australian, which causes dry and rainy seasons, global phenomena such as El Nino and La Nina, rainfall, local meteorological conditions such as temperature and humidity, weather, and the topography of the stations.


2021 ◽  
Vol 56 (2) ◽  
pp. 18-34
Author(s):  
Omer Faruk Atiz ◽  
Ibrahim Kalayci

Abstract The precise point positioning (PPP) method has become more popular due to powerful online global navigation satellite system (GNSS) data processing services, such as the Canadian Spatial Reference System-PPP (CSRS-PPP). At the end of 2020, the CSRS-PPP service launched the ambiguity resolution (AR) feature for global positioning system (GPS) satellites. More reliable results are obtained with AR compared to the results with traditional ambiguity-float PPP. In this study, the performance of the modernized CSRS-PPP was comparatively assessed in terms of static positioning and zenith total delay (ZTD) estimation. Data for 1 month in the year 2019 obtained from 47 international GNSS service (IGS) stations were processed before and after modernization of the CSRS-PPP. The processes were conducted for GPS and GPS + GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) satellite combinations. Besides, the results were analyzed in terms of accuracy and convergence time. According to the solutions, the AR feature of the CSRS-PPP improved the accuracy by about 50% in the east component for GPS + GLONASS configuration. The root-mean-square error (RMSE) of the ZTD difference between modernized CSRS-PPP service and IGS final troposphere product is 5.8 mm for the GPS-only case.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Liangke Huang ◽  
Ge Zhu ◽  
Lilong Liu ◽  
Hua Chen ◽  
Weiping Jiang

2020 ◽  
Vol 8 ◽  
Author(s):  
Agostino N. Meroni ◽  
Marco Montrasio ◽  
Giovanna Venuti ◽  
Stefano Barindelli ◽  
Alessandra Mascitelli ◽  
...  

2020 ◽  
Vol 50 (1) ◽  
pp. 83-111
Author(s):  
Martin Imrišek ◽  
Mária Derková ◽  
Juraj Janák

This paper discusses the in near–real time processing of Global Navigation Satellite System observations at the Department of Theoretical Geodesy at the Slovak University of Technology in Bratislava. Hourly observations from Central Europe are processed with 30 minutes delay to provide tropospheric products. The time series and maps of tropospheric products over Slovakia are published online. Zenith total delay is the most important tropospheric parameter. Its comparison with zenith total delays from IGS and E–GVAP solutions and the validation of estimated zenith total delay error over year 2018 have been made. Zenith total delays are used to improve initial conditions of numerical weather prediction model by the means of the three–dimensional variational analysis at Slovak Hydrometeorological Institute. The impact of assimilation of different observation types into numerical weather prediction model is discussed. The case study was performed to illustrate the impact of zenith total delay assimilation on the precipitation forecast.


2020 ◽  
Author(s):  
◽  
Juan Manuel Aragón Paz

En el presente trabajo de tesis se desarrolla el diseño e implementación de un sistema de cálculo, en tiempo casi real, de parámetros troposféricos mediante técnicas de navegación global por satélite (GNSS, del inglés Global Navigation Satellite System) para Sudamérica. El desarrollo de la llamada Meteorología GNSS se remonta a principios de la década del 90 donde se encuentran los trabajos fundacionales de esta disciplina. Con el correr de los años, nuevas contribuciones han ido definiendo los reales alcances de esta técnica, poniendo en práctica metodologías cada vez más contrastadas con los métodos de medición tradicionales. En los últimos años los esfuerzos se han enfocado en el desarrollo de procedimientos de cálculo que permitan la utilización de los datos GNSS, cada vez más numerosos, en la asimilación para modelos meteorológicos (en especial los de corto plazo), permitiendo así anticipar eventos con alto impacto a la sociedad civil (tormentas con granizo, inundaciones repentinas, eventos convectivos de mesoescala, etc). Numerosos trabajos se han centrado en la implementación de la meteorología GNSS en Europa, Estados Unidos y Japón. Para la región Sudamericana existen pocos y recientes antecedentes de la aplicación de estas metodologías. Se desarrolló un sistema de cálculo, que permite hacer uso de infraestructura existente en la región, tanto meteorológica como geodésica, enfocado en la obtención de las variables de interés meteorológico como son el retardo troposférico cenital (ZTD, del inglés Zenith Total Delay) y el vapor de agua integrado (IWV, del inglés Integrated Water Vapor). Por otra parte, se han realizado estudios en la aplicación del ZTD y el IWV a índices que permitan dar información rápida acerca de posibles eventos meteorológicos severos. En este trabajo se desarrollan las estrategias diseñadas para la adquisición de los datos, su disponibilidad y alcance. Las problemáticas en la disponibilidad de los mismos, de acuerdo a su procedencia, son descriptas y sorteadas. Seguidamente se brinda una detallada descripción de la metodología de estimación de las observaciones, haciendo especial foco en los parámetros de retardo troposférico cenital (ZTD, del ingles Zenith Tropospheric Delay) y vapor de agua integrado (IWV, del inglés Integrated Water Vapor) mediante el procesamiento de las observaciones GNSS y meteorológicas. Una vez que se tienen los resultados, la presentación de los mismos y los posibles formato de intercambio con las instituciones potenciales usuarias del dato son discutidos. Finalizando esta sección se hace un análisis de la performance del sistema de procesamiento contra las técnicas de radio sondeo (convencionales) y alguno de los modelos de reanálisis mas utilizados. En una segunda etapa se explora las distintas capacidades del IWV GNSS para representar las variaciones temporales y espaciales de la distribución del vapor de agua atmosférico frente a distintas situaciones meteorológicas. También, se describe el desarrollo de posibles índices de alerta que hagan utilización de la información disponible a partir del IWV GNSS. Basándose en bibliografía actualizada se comparan las distintas posibilidades de aplicación a la región de estudio en función de la frecuencia temporal y espacial de las observaciones. Los resultados son presentados analizando un evento de interés meteorológico para la región central de Argentina. Finalmente, los puntos mas salientes del presente trabajo son presentados en las conclusiones. Las mismas abarcan desde el sistema de descarga de datos hasta la implementación de los índices de alerta. Se formulan las posibles derivaciones del trabajo y sus implicancias en la mejora continua de este sistema, que en tiempo casi real, provee información sobre los parámetros de ZTD e IWV. Una sección final describe cuáles son las recomendaciones que permitirían mejoras en la utilización de los datos provistos para conseguir un máximo aprovechamiento de los mismos.


2020 ◽  
Author(s):  
Stefano Barindelli ◽  
Andrea Gatti ◽  
Martina Lagasio ◽  
Marco Manzoni ◽  
Alessandra Mascitelli ◽  
...  

<p>InSAR derived Atmospheric Phase Screens (APSs) contain the difference between the atmospheric delay along the SAR sensor line-of-sight of two acquisition epochs: the slave and the master epochs. Using estimates of the atmospheric state at the master epoch, coming from independent sources, the APSs can be transformed into maps of tropospheric Zenith Total Delay (ZTD), that is related to the columnar atmospheric water vapor content. Assimilation experiments of such products into numerical weather prediction (NWP) models have shown a positive impact in the prediction of convective storms.</p><p>In this work, a systematical comparison between various APS and ZTD products aims at determining the optimal procedure to go from APSs to InSAR-derived absolute ZTD maps, i.e. to estimate the master delay map. Two different approaches are compared.</p><p>The first is based on a stack of ZTD maps produced with the assimilation of GNSS ZTD observations into an NWP model. This acts as a physically based interpolator of the GNSS values, which have a spatial resolution much coarser than the InSAR APS one.</p><p>The second is based on a stack of ZTD maps derived by an Iterative Tropospheric Decomposition (ITD) model, as implemented in the GACOS service. In this case, the high-resolution ZTD maps are obtained by an iterative interpolation of a global atmospheric circulation model values and GNSS values where available.</p><p>The results of the comparisons and sensitivity tests on the number of ZTD maps needed to derive the unknown master delay map are shown.</p><p> </p><p> </p><p> </p><p><strong> </strong></p><p><strong> </strong></p>


Sign in / Sign up

Export Citation Format

Share Document