Performance Assessment of PPP-AR Positioning and Zenith Total Delay Estimation with Modernized CSRS-PPP

2021 ◽  
Vol 56 (2) ◽  
pp. 18-34
Author(s):  
Omer Faruk Atiz ◽  
Ibrahim Kalayci

Abstract The precise point positioning (PPP) method has become more popular due to powerful online global navigation satellite system (GNSS) data processing services, such as the Canadian Spatial Reference System-PPP (CSRS-PPP). At the end of 2020, the CSRS-PPP service launched the ambiguity resolution (AR) feature for global positioning system (GPS) satellites. More reliable results are obtained with AR compared to the results with traditional ambiguity-float PPP. In this study, the performance of the modernized CSRS-PPP was comparatively assessed in terms of static positioning and zenith total delay (ZTD) estimation. Data for 1 month in the year 2019 obtained from 47 international GNSS service (IGS) stations were processed before and after modernization of the CSRS-PPP. The processes were conducted for GPS and GPS + GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) satellite combinations. Besides, the results were analyzed in terms of accuracy and convergence time. According to the solutions, the AR feature of the CSRS-PPP improved the accuracy by about 50% in the east component for GPS + GLONASS configuration. The root-mean-square error (RMSE) of the ZTD difference between modernized CSRS-PPP service and IGS final troposphere product is 5.8 mm for the GPS-only case.

2020 ◽  
Author(s):  
◽  
Juan Manuel Aragón Paz

En el presente trabajo de tesis se desarrolla el diseño e implementación de un sistema de cálculo, en tiempo casi real, de parámetros troposféricos mediante técnicas de navegación global por satélite (GNSS, del inglés Global Navigation Satellite System) para Sudamérica. El desarrollo de la llamada Meteorología GNSS se remonta a principios de la década del 90 donde se encuentran los trabajos fundacionales de esta disciplina. Con el correr de los años, nuevas contribuciones han ido definiendo los reales alcances de esta técnica, poniendo en práctica metodologías cada vez más contrastadas con los métodos de medición tradicionales. En los últimos años los esfuerzos se han enfocado en el desarrollo de procedimientos de cálculo que permitan la utilización de los datos GNSS, cada vez más numerosos, en la asimilación para modelos meteorológicos (en especial los de corto plazo), permitiendo así anticipar eventos con alto impacto a la sociedad civil (tormentas con granizo, inundaciones repentinas, eventos convectivos de mesoescala, etc). Numerosos trabajos se han centrado en la implementación de la meteorología GNSS en Europa, Estados Unidos y Japón. Para la región Sudamericana existen pocos y recientes antecedentes de la aplicación de estas metodologías. Se desarrolló un sistema de cálculo, que permite hacer uso de infraestructura existente en la región, tanto meteorológica como geodésica, enfocado en la obtención de las variables de interés meteorológico como son el retardo troposférico cenital (ZTD, del inglés Zenith Total Delay) y el vapor de agua integrado (IWV, del inglés Integrated Water Vapor). Por otra parte, se han realizado estudios en la aplicación del ZTD y el IWV a índices que permitan dar información rápida acerca de posibles eventos meteorológicos severos. En este trabajo se desarrollan las estrategias diseñadas para la adquisición de los datos, su disponibilidad y alcance. Las problemáticas en la disponibilidad de los mismos, de acuerdo a su procedencia, son descriptas y sorteadas. Seguidamente se brinda una detallada descripción de la metodología de estimación de las observaciones, haciendo especial foco en los parámetros de retardo troposférico cenital (ZTD, del ingles Zenith Tropospheric Delay) y vapor de agua integrado (IWV, del inglés Integrated Water Vapor) mediante el procesamiento de las observaciones GNSS y meteorológicas. Una vez que se tienen los resultados, la presentación de los mismos y los posibles formato de intercambio con las instituciones potenciales usuarias del dato son discutidos. Finalizando esta sección se hace un análisis de la performance del sistema de procesamiento contra las técnicas de radio sondeo (convencionales) y alguno de los modelos de reanálisis mas utilizados. En una segunda etapa se explora las distintas capacidades del IWV GNSS para representar las variaciones temporales y espaciales de la distribución del vapor de agua atmosférico frente a distintas situaciones meteorológicas. También, se describe el desarrollo de posibles índices de alerta que hagan utilización de la información disponible a partir del IWV GNSS. Basándose en bibliografía actualizada se comparan las distintas posibilidades de aplicación a la región de estudio en función de la frecuencia temporal y espacial de las observaciones. Los resultados son presentados analizando un evento de interés meteorológico para la región central de Argentina. Finalmente, los puntos mas salientes del presente trabajo son presentados en las conclusiones. Las mismas abarcan desde el sistema de descarga de datos hasta la implementación de los índices de alerta. Se formulan las posibles derivaciones del trabajo y sus implicancias en la mejora continua de este sistema, que en tiempo casi real, provee información sobre los parámetros de ZTD e IWV. Una sección final describe cuáles son las recomendaciones que permitirían mejoras en la utilización de los datos provistos para conseguir un máximo aprovechamiento de los mismos.


2020 ◽  
Author(s):  
Marcus Franz Glaner ◽  
Robert Weber ◽  
Sebastian Strasser

<p><span>Precise Point Positioning (PPP) is one of the most promising processing techniques for Global Navigation Satellite System (GNSS) data. By the use of precise satellite products (orbits, clocks and biases) and sophisticated algorithms applied on the observations of a multi-frequency receiver, coordinate accuracies at the decimetre/centimetre level for a float solution and at the centimetre/millimetre level for a fixed solution can be achieved. In contrast to relative positioning methods (e.g. RTK), PPP does not require nearby reference stations or a close-by reference network. On the other hand PPP has a non-negligible convergence time. To make PPP more competitive against other high-precision GNSS positioning techniques, scientific research focuses on </span><span>reducing the convergence time of PPP. </span></p><p> </p><p><span>In this contribution, we present results of PPP with focus on integer</span><span> ambiguity resolution (PPP-AR) using satellite products from different analysis centers. </span><span>The resulting coordinate accuracy and convergence behaviour are evaluated in various test scenarios. In these test cases we distinguish between the use of satellite products from Graz University of Technology, which are calculated using a raw observation approach, and nowadays publicly available satellite products of different analysis centers (e.g. CNES, CODE). All those products enable PPP-AR in different approaches. To shorten the convergence time, we investigate and compare different PPP processing approaches using GPS and Galileo observations. The use of 2+ frequencies and alternatives to the classical PPP model, which is based on two frequencies and the ionosphere-free linear combination are discussed (e.g. uncombined model with ionospheric constraint). The PPP calculations are performed with the in-house software raPPPid, which has been developed at the research division Higher Geodesy of TU Vienna and is part of the Vienna VLBI and Satellite Software (VieVS PPP).</span></p>


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xingyu Chen

AbstractWhen using Global Navigation Satellite System (GNSS) measurements, Precise Point Positioning with Ambiguity Resolution (PPP-AR) has been a popular substitute for relative positioning in geoscience applications. Compared with the Fractional Cycle Biases (FCB) method, the processing of Integer Recovery Clocks (IRC) products estimate, especially for ambiguity datum fixing, is so complex that its application has been greatly limited. Based on the concept of “carrier range”, we introduce an efficient way to implement the IRC method, termed as the alternative IRC method in this paper. In this method, the fixed ambiguities derived from PPP-AR using the FCB method, and not a fixed-ambiguity datum, are fixed in the IRC products estimate. This greatly reduces the complexity of implementing the IRC method and does not influence the accuracy of positioning. The alternative IRC method outperforms the FCB method by corroborating the consistency of daily positions in nature with international GNSS service weekly solution. To confirm this improvement, global positioning system measurements acquired over a year (2016) from approximately 500 globally distributed stations were processed. The accuracy of IRC products is approximately 20 ps and is highly stable for this year. Moreover, comparing the positioning accuracy of the FCB method to the alternative IRC method, we find that the mean root mean square over the year falls evidently from 2.03 to 1.65 mm at the east component. Therefore, we suggest that the alternative IRC method should be implemented when estimate IRC products.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fuying Zhu ◽  
Yingchun Jiang

Abstract With the rapid development of the Global Navigation Satellite System (GNSS) and its wide applications to atmospheric science research, the global ionosphere map (GIM) total electron content (TEC) data are extensively used as a potential tool to detect ionospheric disturbances related to seismic activity and they are frequently used to statistically study the relation between the ionosphere and earthquakes (EQs). Indeed, due to the distribution of ground based GPS receivers is very sparse or absent in large areas of ocean, the GIM-TEC data over oceans are results of interpolation between stations and extrapolation in both space and time, and therefore, they are not suitable for studying the marine EQs. In this paper, based on the GIM-TEC data, a statistical investigation of ionospheric TEC variations of 15 days before and after the 276 M ≥ 6.0 inland EQs is undertaken. After eliminating the interference of geomagnetic activities, the spatial and temporal distributions of the ionospheric TEC disturbances before and after the EQs are investigated and compared. There are no particularly distinct features in the time distribution of the ionospheric TEC disturbances before the inland EQs. However, there are some differences in the spatial distribution, and the biggest difference is precisely in the epicenter area. On the other hand, the occurrence rates of ionospheric TEC disturbances within 5 days before the EQs are overall higher than those after EQs, in addition both of them slightly increase with the earthquake magnitude. These results suggest that the anomalous variations of the GIM-TEC before the EQs might be related to the seismic activities.


2013 ◽  
Vol 805-806 ◽  
pp. 851-854
Author(s):  
Zhi Ge Jia ◽  
Zhao Sheng Nie ◽  
Wei Wang ◽  
Xiao Guan ◽  
Di Jin Wang

This work describes the field testing process of Global Navigation Satellite System (GNSS) receiver under 220KV, 500KV UHV transmission line and standard calibration field. Analysis for GNSS data results shows that the radio interference generated by EHV transmission lines have no effect on GNSS receiver internal noise levels and valid GNSS observation rate. Within 50 meters of the EHV transmission lines, the multi-path effects (mp1 and mp2 value) significantly exceeded the normal range and becomes larger with the increase of the voltage .outside 50 meters of the EHV transmission line, the multi-path effects have almost no effect on the high-precision GNSS observations.


2012 ◽  
Vol 18 (1) ◽  
pp. 63-85
Author(s):  
Sonia Maria Alves Costa ◽  
Alberto Luis Da Silva ◽  
Marco Aurélio De Almeida Lima ◽  
Newton José De Moura Júnior

Atualmente, o SIRGAS (Sistema de Referência Geocêntrico para as Américas) é realizado por uma rede GNSS (Global Navigation Satellite System) permanente denominada SIRGAS-CON, com cerca de 240 estações em funcionamento permanente, distribuídas na América do Sul, Central e Caribe. Os Centros de Análise SIRGAS foram estabelecidos com a finalidade de determinar sistematicamente as coordenadas das estações SIRGAS-CON, seguindo padrões estabelecidos internacionalmente, a fim de apoiar a manutenção do sistema e as atividades do Grupo de Trabalho SIRGAS-GT I (Sistema de Referência). Desde agosto de 2008 a Coordenação de Geodésia do Instituto Brasileiro de Geografia e Estatística-IBGE assumiu oficialmente as atividades de um Centro de Análise. Este é um trabalho cuja dedicação é crescente uma vez que o número de estações no continente Sul Americano vem aumentando rapidamente nos últimos anos. Desta atividade diária são geradas dentre outros resultados, as séries temporais das coordenadas de cada estação, possibilitando assim a determinação dos deslocamentos das estações em função da movimentação da crosta terrestre, os movimentos locais como subsidência e/ou soerguimento crustal, causados por fenômenos naturais, como por exemplo, terremotos, além de efeitos sazonais causados por fatores diversos. Paralelamente a atividade de processamento dos dados GNSS, o IBGE também realiza semanalmente a combinação das soluções semanais dos nove Centros de Processamento SIRGAS. Esta combinação tem por objetivo comparar os resultados com os obtidos pelo DGFI (Deutsches Geodätisches Forschungsinstitut), o qual disponibiliza a solução final semanal da rede SIRGAS-CON. Por se tratar de resultados precisos, a mudança em alguma informação no processamento pode acarretar alterações nas coordenadas determinadas e, conseqüentemente, descontinuidades nas séries temporais de cada estação. Recentemente, em 17 de abril de 2011 (semana GPS 1632), as órbitas (finais e rápidas), as correções dos relógios dos satélites e o modelo de calibração das antenas disponibilizado pelo International GNSS Service - IGS, passaram a estar referidos à nova realização do IGS, denominada IGS08. Conseqüentemente, a partir dessa data, os processamentos GPS que utilizam os produtos IGS terão seus resultados referidos a este novo sistema de referência, o que poderá acarretar descontinuidades nas coordenadas. O objetivo desse trabalho é apresentar a estratégia de processamento atualmente em operação, bem com uma nova estratégia visando à melhoria dos resultados. Outro objetivo é apresentar alguns resultados do processamento e combinação semanal realizados pelo IBGE, bem como esclarecer as alterações ocorridas com a adoção da nova versão da Rede de Referência Global para soluções GNSS, o IGS08 e uma análise preliminar da conseqüência desta mudança.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


2020 ◽  
Vol 10 (16) ◽  
pp. 5420 ◽  
Author(s):  
Antonio Angrisano ◽  
Gino Dardanelli ◽  
Anna Innac ◽  
Alessandro Pisciotta ◽  
Claudia Pipitone ◽  
...  

In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d’Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt für Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases.


2020 ◽  
Vol 12 (14) ◽  
pp. 2322 ◽  
Author(s):  
Andreja Sušnik ◽  
Andrea Grahsl ◽  
Daniel Arnold ◽  
Arturo Villiger ◽  
Rolf Dach ◽  
...  

In the framework of the European Gravity Service for Improved Emergency Management (EGSIEM) project, consistent sets of state-of-the-art reprocessed Global Navigation Satellite System (GNSS) orbits and satellite clock corrections have been generated. The reprocessing campaign includes data starting in 1994 and follows the Center for Orbit Determination in Europe (CODE) processing strategy, in particular exploiting the extended version of the empirical CODE Orbit Model (ECOM). Satellite orbits are provided for Global Positioning System (GPS) satellites since 1994 and for Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) since 2002. In addition, a consistent set of GPS satellite clock corrections with 30 s sampling has been generated from 2000 and with 5 s sampling from 2003 onwards. For the first time in a reprocessing scheme, GLONASS satellite clock corrections with 30 s sampling from 2008 and 5 s from 2010 onwards were also generated. The benefit with respect to earlier reprocessing series is demonstrated in terms of polar motion coordinates. GNSS satellite clock corrections are validated in terms of completeness, Allan deviation, and precise point positioning (PPP) using terrestrial stations. In addition, the products herein were validated with Gravity Recovery and Climate Experiment (GRACE) precise orbit determination (POD) and Satellite Laser Ranging (SLR). The dataset is publicly available.


Sign in / Sign up

Export Citation Format

Share Document