semibalanus balanoides
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 2)

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Bianca R. P. Brown ◽  
Joaquin C. B. Nunez ◽  
David M. Rand

Abstract Background Natural populations inhabiting the rocky intertidal experience multiple ecological stressors and provide an opportunity to investigate how environmental differences influence microbiomes over small geographical scales. However, very few microbiome studies focus on animals that inhabit the intertidal. In this study, we investigate the microbiome of the intertidal barnacle Semibalanus balanoides. We first describe the microbiome of two body tissues: the feeding appendages, or cirri, and the gut. Next, we examine whether there are differences between the microbiome of each body tissue of barnacles collected from the thermally extreme microhabitats of the rocky shores’ upper and lower tidal zones. Results Overall, the microbiome of S. balanoides consisted of 18 phyla from 408 genera. Our results showed that although cirri and gut microbiomes shared a portion of their amplicon sequence variants (ASVs), the microbiome of each body tissue was distinct. Over 80% of the ASVs found in the cirri were also found in the gut, and 44% of the ASVs found in the gut were also found in the cirri. Notably, the gut microbiome was not a subset of the cirri microbiome. Additionally, we identified that the cirri microbiome was responsive to microhabitat differences. Conclusion Results from this study indicate that S. balanoides maintains distinct microbiomes in its cirri and gut tissues, and that the gut microbiome is more stable than the cirri microbiome between the extremes of the intertidal.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Peter S. Petraitis ◽  
S. R. Dudgeon

Abstract Climate change has already altered the environmental conditions of the world’s oceans. Here we report declines in gastropod abundances and recruitment of mussels (Mytilus edulis) and barnacles (Semibalanus balanoides) over the last two decades that are correlated with changes in temperature and ocean conditions. Mussel recruitment is declining by 15.7% per year, barnacle recruitment by 5.0% per year, and abundances of three common gastropods are declining by an average of 3.1% per year (Testudinalia testudinalis, Littorina littorea, and Nucella lapillus). The declines in mussels and the common periwinkle (L. littorea) are correlated with warming sea temperatures and the declines in T. testudinalis and N. lapillus are correlated with aragonite saturation state, which affects rates of shell calcification. These species are common on shores throughout the North Atlantic and their loss is likely to lead to simplification of an important food web on rocky shores.


2019 ◽  
Vol 40 (2) ◽  
pp. 209-212 ◽  
Author(s):  
Inês Leal ◽  
Augusto A V Flores ◽  
Ricardo A Scrosati ◽  
Réjean Tremblay

Abstract It is commonly assumed that the pelagic cyprid larvae of acorn barnacles must permanently attach to a substrate before metamorphosing to the benthic juvenile stage. We show that this is not always the case and demonstrate that some cyprids can metamorphose in the water column, i.e. without first becoming cemented to a surface. We observed early-metamorphosing cyprids to fully developed juveniles in coastal plankton samples during the 2018 recruitment season of Semibalanus balanoides (Linnaeus, 1767) in Atlantic Canada. We demonstrated through a laboratory experiment that cyprids can be induced to fully metamorphose into pelagic juveniles. These novel findings raise the question of whether this phenomenon may also occur in other barnacle species.


2019 ◽  
Vol 16 (157) ◽  
pp. 20190218 ◽  
Author(s):  
R. L. Mitchell ◽  
M. Coleman ◽  
P. Davies ◽  
L. North ◽  
E. C. Pope ◽  
...  

Correlative imaging combines information from multiple modalities (physical–chemical–mechanical properties) at various length scales (centimetre to nanometre) to understand the complex biological materials across dimensions (2D–3D). Here, we have used numerous coupled systems: X-ray microscopy (XRM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), optical light microscopy (LM) and focused ion beam (FIB-SEM) microscopy to ascertain the microstructural and crystallographic properties of the wall-plate joints in the barnacle Semibalanus balanoides . The exoskeleton is composed of six interlocking wall plates, and the interlocks between neighbouring plates (alae) allow barnacles to expand and grow while remaining sealed and structurally strong. Our results indicate that the ala contain functionally graded orientations and microstructures in their crystallography, which has implications for naturally functioning microstructures, potential natural strengthening and preferred oriented biomineralization. Elongated grains at the outer edge of the ala are oriented perpendicularly to the contact surface, and the c -axis rotates with the radius of the ala. Additionally, we identify for the first time three-dimensional nanoscale ala pore networks revealing that the pores are only visible at the tip of the ala and that pore thickening occurs on the inside (soft bodied) edge of the plates. The pore networks appear to have the same orientation as the oriented crystallography, and we deduce that the pore networks are probably organic channels and pockets, which are involved with the biomineralization process. Understanding these multiscale features contributes towards an understanding of the structural architecture in barnacles, but also their consideration for bioinspiration of human-made materials. The work demonstrates that correlative methods spanning different length scales, dimensions and modes enable the extension of the structure–property relationships in materials to form and function of organisms.


2019 ◽  
Vol 15 (6) ◽  
pp. 20180763 ◽  
Author(s):  
Nick Aldred ◽  
Andrew Nelson

Barnacles are conspicuous members of rocky intertidal communities and settlement of the final larval stage, the cyprid, is influenced by the presence of biofilms. While modulation of cyprid settlement by biofilms has been studied extensively, the acquisition of a specific microbiome by the settling larva has not. This study investigated settlement in the field of Semibalanus balanoides in two consecutive years when the composition of the benthic bacterial community differed. In both years, settling cyprids adopted a specific sub-set of benthic bacteria that was distinct from the planktonic cyprid and the benthos. This microbiome was consistent, regardless of annual variability in the benthic community structure, and established within hours of settlement. The results imply that a natural process of selection occurs during the critical final transition of S. balanoides to the sessile form. The apparent consistency of this process between years suggests that optimal growth and survival of barnacles could depend upon a complex inter-kingdom relationship, as has been demonstrated in other animal systems.


2019 ◽  
Author(s):  
R.L Mitchell ◽  
M. Coleman ◽  
P. Davies ◽  
L. North ◽  
E.C. Pope ◽  
...  

1.AbstractCorrelative imaging combines information from multiple modalities (physical-chemical-mechanical properties) at various length-scales (cm to nm) to understand complex biological materials across dimensions (2D-3D). Here, we have used numerous coupled systems: X-ray microscopy (XRM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), optical light microscopy (LM), and focused-ion beam (FIB-SEM) microscopy to ascertain the microstructural and crystallographic properties of the wall-plate joints in the barnacle Semibalanus balanoides. The exoskeleton is composed of six interlocking wall-plates, and the interlocks between neighbouring plates (alae) allow barnacles to expand and grow whilst remaining sealed and structurally strong. Our results indicate that the ala contain functionally-graded orientations and microstructures in their crystallography, which has implications for naturally functioning microstructures, potential natural strengthening, and preferred oriented biomineralisation. Elongated grains at the outer edge of the ala are oriented perpendicularly to the contact surface, and the c-axis rotates with the radius of the ala. Additionally, we identify for the first time three-dimensional nano-scale ala pore networks revealing that the pores are only visible at the tip of the ala, and that pore thickening occurs on the inside (soft-bodied) edge of the plates. The pore networks appear to have the same orientation as the oriented crystallography, and we deduce that the pore networks are probably organic channels and pockets which are involved with the biomineralisation process. Understanding these multi-scale features contributes towards an understanding of the structural architecture in barnacles, but also their consideration for bioinspiration of human-made materials. The work demonstrates that correlative methods spanning different length-scales, dimensions and modes enable the extension of structure-property relationships in materials to form and function of organisms.


2018 ◽  
Author(s):  
Katie E. Marshall ◽  
Eddy J. Dowle ◽  
Alexandra Petrunina ◽  
Gregory Kolbasov ◽  
Benny K. K. Chan

AbstractThe ability to survive freezing has repeatedly evolved across multiple phyla. This suggests that the mechanisms of freeze tolerance must be readily evolvable from basal physiological traits. While several biochemical correlates to freeze tolerance have been described, the mechanism that confers freeze tolerance is still not well understood. To understand both the basic biochemical mechanisms of freeze tolerance as well as their role in local adaptation at the poleward range edge, we conducted a transcriptomic study on two populations (one from the poleward range margin in the White Sea, Russia, and one from the central coast of British Columbia, Canada) of the cold water acorn barnacle Semibalanus balanoides on a time series following a freezing event. We found that the British Columbia population (at the equatorward range margin) was significantly less freeze tolerant than the White Sea population (at the poleward range margin). After assembling and annotating a de novo transcriptome for S. balanoides, we found that the patterns of differential transcript expression following freezing were almost entirely non-overlapping between the two populations, with the White Sea population expressing a series of heat shock proteins in response to freezing stress as well as several aquaporins, while the British Columbia population expressed a series of proteases instead, indicating severe protein damage. We found strong evidence of purifying selection on the significantly upregulated transcripts in the White Sea population, suggesting local adaptation to freezing threat. Taken together, this shows the importance of freeze tolerance to population survival at the poleward range margin, and highlights the central roles of aquaporins and heat shock proteins to the trait of freeze tolerance across taxa.


2018 ◽  
Vol 24 (S1) ◽  
pp. 376-377 ◽  
Author(s):  
Ria L. Mitchell ◽  
Cameron Pleydell-Pearce ◽  
Mark P. Coleman ◽  
Peter Davies ◽  
Laura North ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document