scholarly journals Induction of adaptive immune responses against antigens incorporated within the capsid of simian virus 40

2020 ◽  
Vol 101 (8) ◽  
pp. 853-862
Author(s):  
Kikue Saika ◽  
Masahiko Kato ◽  
Hideaki Sanada ◽  
Sho Matsushita ◽  
Masanori Matsui ◽  
...  

Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Byeonghwi Lim ◽  
Sangwook Kim ◽  
Kyu-Sang Lim ◽  
Chang-Gi Jeong ◽  
Seung-Chai Kim ◽  
...  

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.


Viruses ◽  
2012 ◽  
Vol 4 (9) ◽  
pp. 1438-1476 ◽  
Author(s):  
Carolien E. van de Sandt ◽  
Joost H. C. M. Kreijtz ◽  
Guus F. Rimmelzwaan

2013 ◽  
Vol 137 (2) ◽  
pp. 324-334 ◽  
Author(s):  
Jennifer L. H. Wheeler ◽  
Kyle C. Martin ◽  
Emily Resseguie ◽  
B. Paige Lawrence

2020 ◽  
Author(s):  
Minami Nagai ◽  
Miyu Moriyama ◽  
Takeshi Ichinohe

AbstractGut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here we demonstrate that while intranasal administration of influenza virus hemagglutinin vaccine alone was insufficient to induce the vaccine-specific antibody responses, disruption of nasal bacteria by lysozyme or addition of culturable oral bacteria from a healthy human volunteer rescued inability of the nasal bacteria to generate antibody responses to intranasally administered the split-virus vaccine. Myd88-depdnent signaling in the hematopoietic compartment was required for adjuvant activity of intranasally administered oral bacteria. In addition, we found that the oral bacteria-combined intranasal vaccine induced protective antibody response to influenza virus and SARS-CoV-2 infection. Our findings here have identified a previously unappreciated role for nasal bacteria in the induction of the virus-specific adaptive immune responses.


2011 ◽  
Vol 187 (12) ◽  
pp. 6428-6436 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Michael Pazos ◽  
Igotz Delgado ◽  
William Murk ◽  
Sathish Kumar Mungamuri ◽  
...  

Vaccines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 66 ◽  
Author(s):  
Ki-Hye Kim ◽  
Young-Man Kwon ◽  
Young-Tae Lee ◽  
Min-Chul Kim ◽  
Hye Hwang ◽  
...  

Influenza virus M2 protein has a highly conserved ectodomain (M2e) as a cross-protective antigenic target. We investigated the antigenic and immunogenic properties of tandem repeat M2e (5xM2e) proteins and virus-like particles (5xM2e VLP) to better understand how VLP and protein platform vaccines induce innate and protective adaptive immune responses. Despite the high antigenic properties of 5xM2e proteins, the 5xM2e VLP was superior to 5xM2e proteins in inducing IgG2a isotype antibodies, T cell responses, plasma cells and germinal center B cells as well as in conferring cross protection. Mice primed with 5xM2e VLP were found to be highly responsive to 5xM2e protein boost, overcoming the low immunogenicity and protective efficacy of 5xM2e proteins. Immunogenic differences between VLPs and proteins in priming immune responses might be due to an intrinsic ability of 5xM2e VLP to stimulate dendritic cells secreting T helper type 1 (Th1) cytokines. We also found that 5xM2e VLP was effective in inducing inflammatory cytokines and chemokines, and in recruiting macrophages, monocytes, neutrophils, and CD11b+ dendritic cells at the injection site. Therefore, this study provides evidence that 5xM2e VLP is an effective vaccine platform, inducing cross-protection by stimulating innate and adaptive immune responses.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Siddharth Balachandran ◽  
Glenn F. Rall

ABSTRACT Influenza A viruses (IAV) are lytic viruses that have recently been found to activate necroptosis in many of the cell types they infect. Necroptotic cell death is potently immunogenic and limits IAV spread by directly eliminating infected cells and by mobilizing both innate and adaptive immune responses. The benefits of necroptosis to the host, however, may sometimes be outweighed by the potentially deleterious hyperinflammatory consequences of activating this death modality in pulmonary and other tissues.


Sign in / Sign up

Export Citation Format

Share Document