Reverse Engineering a Hedge Trimmer: A Practical Approach to Incorporate Geometric Dimensioning and Tolerancing (GD&T) Effectively in an Undergraduate Freshman Engineering Course

Author(s):  
Tikran Kocharian ◽  
Sanjivan Manoharan

Abstract Geometric Dimensioning and Tolerancing (GD&T), due to the inherent complexity, is a challenging topic to teach and learn, especially at the undergraduate freshman level. Many institutes either cover GD&T on a superficial level or choose to overlook it. Incorporating such a broad subject in an already busy curricula remains a major challenge for many academic institutes, including ours. The knowledge and skill level of our students in GD&T at the beginning of their co-op is a major concern for several employers. These employers have to expend significant resources to train our students and graduates. To address this growing concern, a practical project was incorporated into a freshman introductory engineering course; a Ryobi hedge trimmer Model No. RY39500 was utilized. The students were divided into five groups, and each group was given a mechanical component from the assembly. First, each group was tasked with taking the necessary measurements to create a Computer Aided Design (CAD) model of their component in an effort to commence the reverse engineering process. The CAD model was then additively manufactured using fused deposition modeling. A detailed drawing of each component was created and GD&T concepts and symbols were applied to the drawing following ASME/ANSI Y14.5-2009 standards. The project was very well received by the students. It enhanced their understanding and skills necessary to implement GD&T concepts and symbols both in practice and in preparing engineering drawings. The 3-D printed parts were shared among the groups and the manufactured parts were fit together to replicate the real life assembling.

2014 ◽  
Vol 20 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Wayne M. Johnson ◽  
Matthew Rowell ◽  
Bill Deason ◽  
Malik Eubanks

Purpose – The purpose of this paper is to present a qualitative and quantitative comparison and evaluation of an open-source fused deposition modeling (FDM) additive manufacturing (AM) system with a proprietary FDM AM system based on the fabrication of a custom benchmarking model. Design/methodology/approach – A custom benchmarking model was fabricated using the two AM systems and evaluated qualitatively and quantitatively. The fabricated models were visually inspected and scanned using a 3D laser scanning system to examine their dimensional accuracy and geometric dimensioning and tolerancing (GD&T) performance with respect to the computer-aided design (CAD) model geometry. Findings – The open-source FDM AM system (CupCake CNC) successfully fabricated most of the features on the benchmark, but the model did suffer from greater thermal warping and surface roughness, and limitations in the fabrication of overhang structures compared to the model fabricated by the proprietary AM system. Overall, the CupCake CNC provides a relatively accurate, low-cost alternative to more expensive proprietary FDM AM systems. Research limitations/implications – This work is limited in the sample size used for the evaluation. Practical implications – This work will provide the public and research AM communities with an improved understanding of the performance and capabilities of an open-source AM system. It may also lead to increased use of open-source systems as research testbeds for the continued improvement of current AM processes, and the development of new AM system designs and processes. Originality/value – This study is one of the first comparative evaluations of an open-source AM with a proprietary AM system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Paschalis Charalampous ◽  
Ioannis Kostavelis ◽  
Theodora Kontodina ◽  
Dimitrios Tzovaras

Purpose Additive manufacturing (AM) technologies are gaining immense popularity in the manufacturing sector because of their undisputed ability to construct geometrically complex prototypes and functional parts. However, the reliability of AM processes in providing high-quality products remains an open and challenging task, as it necessitates a deep understanding of the impact of process-related parameters on certain characteristics of the manufactured part. The purpose of this study is to develop a novel method for process parameter selection in order to improve the dimensional accuracy of manufactured specimens via the fused deposition modeling (FDM) process and ensure the efficiency of the procedure. Design/methodology/approach The introduced methodology uses regression-based machine learning algorithms to predict the dimensional deviations between the nominal computer aided design (CAD) model and the produced physical part. To achieve this, a database with measurements of three-dimensional (3D) printed parts possessing primitive geometry was created for the formulation of the predictive models. Additionally, adjustments on the dimensions of the 3D model are also considered to compensate for the overall shape deviations and further improve the accuracy of the process. Findings The validity of the suggested strategy is evaluated in a real-life manufacturing scenario with a complex benchmark model and a freeform shape manufactured in different scaling factors, where various sets of printing conditions have been applied. The experimental results exhibited that the developed regressive models can be effectively used for printing conditions recommendation and compensation of the errors as well. Originality/value The present research paper is the first to apply machine learning-based regression models and compensation strategies to assess the quality of the FDM process.


Author(s):  
V. Vinod Kumar ◽  
G. R. N. Tagore ◽  
A. Venugopal

Rapid prototyping technology is widely used to fabricate 3-D objects with all features of a design using Computer Aided Design (CAD) model. The final fabricated object with rapid prototyping technique has to be evaluated regarding the extent of its closeness to CAD model. Geometric conformity analysis has to be used in determining a measure of the geometric deviation between designed and fabricated 3-D models. In this paper evaluation technique is used to provide an aggregate measure of overall geometric deviation between designed free formed surface and its fabricated geometries using Fused Deposition Modeling (FDM) technique. This approach is typically utilized for large or more complex assemblies such as vehicle interiors and exteriors and full scale aircraft etc. Computer Aided Inspection with CMM aims at development of suitable methodology so as to convert data obtained from CMM to convenient formats to measure dimensional and form errors of freeform surface objects. The present work used in additive manufacturing with the newer methodology of inspecting in rapid product development also.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Elisa S. Schrank ◽  
Lester Hitch ◽  
Kevin Wallace ◽  
Richard Moore ◽  
Steven J. Stanhope

Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to predictably tune and precisely manufacture orthoses with objectively customized fit and functional characteristics.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Weston Grove ◽  
Emmett Hull ◽  
Z. J. Pei ◽  
...  

Additive manufacturing (AM) is a class of manufacturing processes where material is deposited in a layer-by-layer fashion to fabricate a three-dimensional part directly from a computer-aided design model. With a current market share of 44%, thermoplastic-based additive manufacturing such as fused deposition modeling (FDM) is a prevailing technology. A key challenge for AM parts (especially for parts made by FDM) in engineering applications is the weak inter-layer adhesion. The lack of bonding between filaments usually results in delamination and mechanical failure. To address this challenge, this study embedded carbon nanotubes into acrylonitrile butadiene styrene (ABS) thermoplastics via a filament extrusion process. The vigorous response of carbon nanotubes to microwave irradiation, leading to the release of a large amount of heat, is used to melt the ABS thermoplastic matrix adjacent to carbon nanotubes within a very short time period. This treatment is found to enhance the inter-layer adhesion without bulk heating to deform the 3D printed parts. Tensile and flexural tests were performed to evaluation the effects of microwave irradiation on mechanical properties of the specimens made by FDM. Scanning electron microscopic (SEM) images were taken to characterize the fracture surfaces of tensile test specimens. The actual carbon nanotube contents in the filaments were measured by conducting thermogravimetric analysis (TGA). The effects of microwave irradiation on the electrical resistivity of the filament were also reported.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2020 ◽  
Vol 3 (1) ◽  
pp. 274-284
Author(s):  
Dorota Palka

AbstractDespite the very rapid technological development, the general concept of mechanical devices has not changed. Still, the most common element of these devices are gears, whose range of use is very wide. There are both technological and historical considerations for the reconstruction of gears and other elements. In particular, this applies to spare parts for technical facilities that are not available on the market or service costs are too high. Contemporary reconstruction is called Reverse Engineering, which offers tools that allow transformation of an existing object through a virtual model into the final real product. Modern production engineering is based on innovative CAD – Computer Aided Designed design methods and computer-aided manufacturing technologies, CAM – Computer Aided Manufacturing. The rapid development of 3D CAD systems has led to the development of solutions to obtain the designed object, already at the development stage. Such a solution is the Rapid Prototyping method, designed for fast, precise and repeatable production of machine components. Widespread use and growing interest in the use of additive printing influenced the development of this technology. The purpose of the article is to present the practical application of the Reverse Engineering method and 3D printing in the reconstruction of gears. The object of research is the real gear, which has been reconstructed using Reverse Engineering and 3D printing. The article presents the basic assumptions of the methods used and the methodology for conducting reconstruction work. FDM (Fused Deposition Modeling) technology was used for the research. The results obtained are a real example of the practical application of the presented methods. At the same time, they create great opportunities for their wider use.


Author(s):  
James I. Novak ◽  
Mark Zer-Ern Liu ◽  
Jennifer Loy

This chapter builds new knowledge for design engineers adopting fused deposition modeling (FDM) technology as an end manufacturing process, rather than simply as a prototyping process. Based on research into 2.5D printing and its use in real-world additive manufacturing situations, a study featuring 111 test pieces across the range of 0.4-4.0mm in thickness were analyzed in increments of 0.1mm to understand how these attributes affect the quality and print time of the parts and isolate specific dimensions which are optimized for the FDM process. The results revealed optimized zones where the outer wall, inner wall/s, and/or infill are produced as continuous extrusions significantly faster to print than thicknesses falling outside of optimized zones. As a result, a quick reference graph and several equations are presented based on fundamental FDM principles, allowing design engineers to implement optimized wall dimensions in computer-aided design (CAD) rather than leaving print optimization to technicians and manufacturers in the final process parameters.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001021-001027 ◽  
Author(s):  
Cassie Gutierrez ◽  
Rudy Salas ◽  
Gustavo Hernandez ◽  
Dan Muse ◽  
Richard Olivas ◽  
...  

Fabricating entire systems with both electrical and mechanical content through on-demand 3D printing is the future for high value manufacturing. In this new paradigm, conformal and complex shapes with a diversity of materials in spatial gradients can be built layer-by-layer using hybrid Additive Manufacturing (AM). A design can be conceived in Computer Aided Design (CAD) and printed on-demand. This new integrated approach enables the fabrication of sophisticated electronics in mechanical structures by avoiding the restrictions of traditional fabrication techniques, which result in stiff, two dimensional printed circuit boards (PCB) fabricated using many disparate and wasteful processes. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing and robotic pick-and-place for component placement can 1) provide the capability to print-on-demand fabrication, 2) enable the use of micron-resolution cavities for press fitting electronic components and 3) integrate conductive traces for electrical interconnect between components. The fabrication freedom introduced by AM techniques such as stereolithography (SL), ultrasonic consolidation (UC), and fused deposition modeling (FDM) have only recently been explored in the context of electronics integration and 3D packaging. This paper describes a process that provides a novel approach for the fabrication of stiff conformal structures with integrated electronics and describes a prototype demonstration: a volumetrically-efficient sensor and microcontroller subsystem scheduled to launch in a CubeSat designed with the CubeFlow methodology.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 347 ◽  
Author(s):  
Shib Banerjee ◽  
Stephen Burbine ◽  
Nischay Kodihalli Shivaprakash ◽  
Joey Mead

Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young’s modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.


Sign in / Sign up

Export Citation Format

Share Document