Vibration transmissions and predictions within low-rise buildings above throat area in the metro depot

2021 ◽  
pp. 107754632110576
Author(s):  
Ziyu Tao ◽  
Chao Zou ◽  
Yimin Wang ◽  
Jie Wu

Train-induced feelable vibrations can bring side effects to people living or working in the building, as well as to operation of precise equipment. As massive construction of over-track buildings above metro depots prevails in megacities, impacts from train-induced feelable vibration take more concern. Four standard-designed 4-story steel-framed offices above the throat area in the Qianhai metro depot in Shenzhen, China, are studied in this research. The field measurements were conducted to investigate the influences of track alignment and track location in the throat area on vibration responses of over-track buildings. Detailed vibration analyses using the finite element method have been conducted. Train-induced floor vibration assessments on human comfort are carried out based on a total of 54 train pass-bys operated in the morning and evening and on different tracks. It can be found that the track alignment primarily affected the higher frequency components of train-induced vibrations, where curved trackinduced vibrations have larger amplitudes. The variance of train-induced building vibrations among pass-bys on different track locations was reduced compared with that of ground vibrations because of the averaging effects caused by multiple transmitting paths within the massive platform and stiff transfer structures. Train-induced acceleration levels at mid-floor can be 20–25 dB larger than those near columns at floor resonance frequencies which are dependent on the structural design. This research gives a comprehensive insight into train-induced vibrations within low-rise steel-framed buildings above the throat area in the metro depot, which is a valuable reference for assessments before the construction of future similar over-track communities.

2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


2020 ◽  
Vol 57 (10) ◽  
pp. 1617-1621
Author(s):  
Shuangfeng Guo ◽  
D.V. Griffiths

This note presents results of stability analyses of two-layer undrained slopes by the finite element method. The study focuses on the circumstances under which either deep or shallow failure mechanisms occur, as a function of the strength ratio of the layers, slope angle, and foundation depth ratio. Improved knowledge of the location of the critical failure mechanism(s) in two-layer systems will give engineers better insight into where to focus their attention in terms or remediation or reinforcement to preserve stability.


2010 ◽  
Vol 44-47 ◽  
pp. 2031-2035
Author(s):  
Qian Wang ◽  
Lei Shi ◽  
Zhe Zhang

Tong-Tai Bridge is a special-shape arch bridge with arch obliquely cross the curved beam. In order to validate the theoretical solutions and ensure the structure safety, model test is discussed. In this paper, the structural design, fabrication procedures and test method of the model are presented. Meanwhile, the finite element method is applied to analyses this special structure. Some experience of the structure construction is obtained during the practice process and the experimental results achieved are satisfactory.


2018 ◽  
Vol 64 (4) ◽  
pp. 89-103
Author(s):  
A. Nesterenko ◽  
G. Stolpovskiy ◽  
M. Nesterenko

AbstractThe actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software tools for automating the computation process. The article presents the method for calculating flexural stiffness and moment of inertia of a beam construction system by its own frequencies. The method includes calculation algorithm realizing the finite element method.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 58
Author(s):  
Tieping Wei ◽  
Xingyang Zhou ◽  
Xiaoxiang Yang ◽  
Jinhui Yao

The stiffness of truck scales is the main influence factor on its measurement accuracy. Three kinds of SCS-100T large electronic truck scales are different in size arrangement of U-beam. Based on the finite element method, the models of the truck scales were established. The stiffness and strength of the scales were compared on account of the analysis results. The results show that U-beam arrangement of the low at both ends but high in the middle structure for the truck scale not only can save material but also meet the requirement of stiffness. Simulation analysis provides the theoretical basis for the structural design of truck scales.


2015 ◽  
Vol 802 ◽  
pp. 155-160
Author(s):  
Chuen Keit Leing ◽  
Anwar Mohammed Parvez ◽  
Wael Elleithy

This paper investigates the effects of footfall induced vibrations on the floors of a 3-storey sub-frame structure. Composite and concrete floors were examined. Variables involved are floor widths, floor thicknesses, floor aspect ratios and column heights. Models are generated and analysed using the finite element method. The vibration responses were represented in terms of displacements and accelerations. Results show that higher vibration responses occurs on longer floor widths, thinner floor slabs and higher floor aspect ratios for both composite and concrete floors.


Sign in / Sign up

Export Citation Format

Share Document