concurrent architecture
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Kai Li ◽  
Qing-yu Cai

AbstractQuantum algorithms can greatly speed up computation in solving some classical problems, while the computational power of quantum computers should also be restricted by laws of physics. Due to quantum time-energy uncertainty relation, there is a lower limit of the evolution time for a given quantum operation, and therefore the time complexity must be considered when the number of serial quantum operations is particularly large. When the key length is about at the level of KB (encryption and decryption can be completed in a few minutes by using standard programs), it will take at least 50-100 years for NTC (Neighbor-only, Two-qubit gate, Concurrent) architecture ion-trap quantum computers to execute Shor’s algorithm. For NTC architecture superconducting quantum computers with a code distance 27 for error-correcting, when the key length increased to 16 KB, the cracking time will also increase to 100 years that far exceeds the coherence time. This shows the robustness of the updated RSA against practical quantum computing attacks.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Kayol S. Mayer ◽  
Matheus S. De Oliveira ◽  
Candice Müller ◽  
Fernando C. C. De Castro ◽  
Maria C. F. De Castro

Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller (FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve lower residual steady-state MSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.


Author(s):  
Nikolas Carneiro ◽  
Ranieri Teixeira ◽  
Tiago Araujo ◽  
Carlos Santos ◽  
Jairo Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document