lens physiology
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3142
Author(s):  
Julie C Lim ◽  
Mariana Caballero Arredondo ◽  
Andrea J. Braakhuis ◽  
Paul J. Donaldson

Cataracts or clouding of the lens is the leading cause of blindness in the world. Age and diabetes are major risk factors, and with an increasing aging and diabetic population, the burden of cataracts will grow. Cataract surgery is an effective way to restore vision; however, alternatives to cataract surgery are required to reduce the looming cataract epidemic. Since it is well established that oxidative damage plays a major role in the etiology of cataracts, antioxidants have been promoted as therapies to delay and/or prevent cataracts. However, many antioxidant interventions including vitamin C have produced mixed results as anti-cataract therapies. Progress has been made towards our understanding of lens physiology and the mechanisms involved in the delivery and uptake of antioxidants to the lens which may guide future studies aimed at addressing some of the inconsistencies seen in previous animal and human studies. Of interest is the potential for vitamin C based supplements in delaying the onset of cataracts post vitrectomy which occurs in up to 80% of patients within two years. These targeted approaches are required to reduce the burden of cataract on hospitals and improve the quality of life of our aging and diabetic population.


2012 ◽  
Vol 303 (12) ◽  
pp. C1252-C1259 ◽  
Author(s):  
S. J. Gunning ◽  
K. K. H. Chung ◽  
Paul J. Donaldson ◽  
K. F. Webb

The initiation of lens cataract has long been associated with the development of a membrane “leak” in lens fiber cells that depolarizes the lens intracellular potential and elevates intracellular Na+ and Ca2+ concentrations. It has been proposed that the leak observed in cataractous lenses is due to the activation of a nonselective cation (NSC) conductance in the normal electrically tight fiber cells. Studies of the membrane properties of isolated fiber cells using the patch-clamp technique have demonstrated a differentiation-dependent shift in membrane permeability from K+-dominated in epithelial and short fiber cells toward larger contributions from anion and NSC conductances as fiber cells elongate. In this study, the NSC conductances in elongating lens fiber cells are demonstrated to be due to at least two distinct classes: a Gd3+-sensitive, mechanosensitive channel whose blockade is essential for obtaining viable isolated fiber cells, and a second Gd3+-insensitive, La3+-sensitive conductance that appears to be activated by cell shrinkage. This second conductance was eliminated by the replacement of extracellular Na+ with the impermeant cation N-methyl- d-glucamine and was potentiated by both hypertonic stress and isosmotic cell shrinkage evoked by the replacement of extracellular Cl− with the impermeant anion gluconate. This additional cation conductance may play a role in normal lens physiology by mediating regulatory volume increase under osmotic or other physiological challenges. Since the inappropriate activation of NSC channels is implicated in the initiation of lens cataract, they represent potential targets for the development of novel anticataract therapies.


2001 ◽  
Vol 118 (5) ◽  
pp. 447-456 ◽  
Author(s):  
George J. Baldo ◽  
Xiaohua Gong ◽  
Francisco J. Martinez-Wittinghan ◽  
Nalin M. Kumar ◽  
Norton B. Gilula ◽  
...  

Lens fiber cell gap junctions contain α3 (Cx46) and α8 (Cx50) connexins. To examine the roles of the two different connexins in lens physiology, we have genetically engineered mice lacking either α3 or α8 connexin. Intracellular impedance studies of these lenses were used to measure junctional conductance and its sensitivity to intracellular pH. In Gong et al. 1998, we described results from α3 connexin knockout lenses. Here, we present original data from α8 connexin knockout lenses and a comparison with the previous results. The lens has two functionally distinct domains of fiber cell coupling. In wild-type mouse lenses, the outer shell of differentiating fibers (see 1, DF) has an average coupling conductance per area of cell–cell contact of ∼1 S/cm2, which falls to near zero when the cytoplasm is acidified. In the inner core of mature fibers (see 1, MF), the average coupling conductance is ∼0.4 S/cm2, and is insensitive to acidification of the cytoplasm. Both connexin isoforms appear to contribute about equally in the DF since the coupling conductance for either heterozygous knockout (+/−) was ∼70% of normal and 30–40% of the normal for both −/− lenses. However, their contribution to the MF was different. About 50% of the normal coupling conductance was found in the MF of α3 +/− lenses. In contrast, the coupling of MF in the α8 +/− lenses was the same as normal. Moreover, no coupling was detected in the MF of α3 −/− lenses. Together, these results suggest that α3 connexin alone is responsible for coupling MF. The pH- sensitive gating of DF junctions was about the same in wild-type and α3 connexin −/− lenses. However, in α8 −/− lenses, the pure α3 connexin junctions did not gate closed in the response to acidification. Since α3 connexin contributes about half the coupling conductance in DF of wild-type lenses, and that conductance goes to zero when the cytoplasmic pH drops, it appears α8 connexin regulates the gating of α3 connexin. Both connexins are clearly important to lens physiology as lenses null for either connexin lose transparency. Gap junctions in the MF survive for the lifetime of the organism without protein turnover. It appears that α3 connexin provides the long-term communication in MF. Gap junctions in DF may be physiologically regulated since they are capable of gating when the cytoplasm is acidified. It appears α8 connexin is required for gating in DF.


Sign in / Sign up

Export Citation Format

Share Document