scholarly journals Gap Junctional Coupling in Lenses from α8 Connexin Knockout Mice

2001 ◽  
Vol 118 (5) ◽  
pp. 447-456 ◽  
Author(s):  
George J. Baldo ◽  
Xiaohua Gong ◽  
Francisco J. Martinez-Wittinghan ◽  
Nalin M. Kumar ◽  
Norton B. Gilula ◽  
...  

Lens fiber cell gap junctions contain α3 (Cx46) and α8 (Cx50) connexins. To examine the roles of the two different connexins in lens physiology, we have genetically engineered mice lacking either α3 or α8 connexin. Intracellular impedance studies of these lenses were used to measure junctional conductance and its sensitivity to intracellular pH. In Gong et al. 1998, we described results from α3 connexin knockout lenses. Here, we present original data from α8 connexin knockout lenses and a comparison with the previous results. The lens has two functionally distinct domains of fiber cell coupling. In wild-type mouse lenses, the outer shell of differentiating fibers (see 1, DF) has an average coupling conductance per area of cell–cell contact of ∼1 S/cm2, which falls to near zero when the cytoplasm is acidified. In the inner core of mature fibers (see 1, MF), the average coupling conductance is ∼0.4 S/cm2, and is insensitive to acidification of the cytoplasm. Both connexin isoforms appear to contribute about equally in the DF since the coupling conductance for either heterozygous knockout (+/−) was ∼70% of normal and 30–40% of the normal for both −/− lenses. However, their contribution to the MF was different. About 50% of the normal coupling conductance was found in the MF of α3 +/− lenses. In contrast, the coupling of MF in the α8 +/− lenses was the same as normal. Moreover, no coupling was detected in the MF of α3 −/− lenses. Together, these results suggest that α3 connexin alone is responsible for coupling MF. The pH- sensitive gating of DF junctions was about the same in wild-type and α3 connexin −/− lenses. However, in α8 −/− lenses, the pure α3 connexin junctions did not gate closed in the response to acidification. Since α3 connexin contributes about half the coupling conductance in DF of wild-type lenses, and that conductance goes to zero when the cytoplasmic pH drops, it appears α8 connexin regulates the gating of α3 connexin. Both connexins are clearly important to lens physiology as lenses null for either connexin lose transparency. Gap junctions in the MF survive for the lifetime of the organism without protein turnover. It appears that α3 connexin provides the long-term communication in MF. Gap junctions in DF may be physiologically regulated since they are capable of gating when the cytoplasm is acidified. It appears α8 connexin is required for gating in DF.

1979 ◽  
Vol 80 (1) ◽  
pp. 150-165 ◽  
Author(s):  
M L Ledbetter ◽  
M Lubin

Mammalian cells of different species differ in sensitivity to ouabain. This sensitivity is expressed as reduced intracellular K+ content, reduced rates of protein synthesis, and cessation of cell multiplication. Using 86Rb+ as a measure of intracellular K+, we found higher levels of radioactivity in mixtures of ouabain-sensitive and -resistant cells cultured in the presence of ouabain than predicted from pure cultures of the two component cell types. The simplest explanation is that K+ and 86Rb+ are being transferred from ouabain-resistant to ouabain-sensitive cells, enhancing the total intracellular 86Rb+ in the culture. A function, "index of cooperation," expresses this enhancement as a number ranging from 0 to 1, and permits comparisons to be made under various culture conditions and using various cell types. An index of cooperation greater than 0 requires cell contact, since no enhancement occurs when contact between two cell types in the same culture is prevented. The index of cooperation for a number of different cell combinations agrees with other measures of cell-cell interaction associated with gap junctions, such as electrical coupling and metabolic cooperation. Coculture of ouabain-sensitive and ouabain-resistant cells in the presence of ouabain also leads to restoration of the capacity for protein synthesis. Autoradiography shows that this restoration occurs in the sensitive cell type and is dependent upon contact with ouabain-resistant cells. Furthermore, sensitive cells are able to multiply in the presence of ouabain when cocultured with resistant cells. Thus K+, presumably transferred to sensitive cells through gap junctions, is able to counteract the toxic effects of ouabain on intracellular K+ levels and protein synthesis, and to restore growth.


2017 ◽  
Vol 34 ◽  
Author(s):  
SABRINA ASTERITI ◽  
CLAUDIA GARGINI ◽  
LORENZO CANGIANO

AbstractRod-cone gap junctions mediate the so-called “secondary rod pathway”, one of three routes that convey rod photoreceptor signals across the retina. Connexin 36 (Cx36) is expressed at these gap junctions, but an unidentified connexin protein also seems to be expressed. Cx36 knockout mice have been used extensively in the quest to dissect the roles in vision of all three pathways, with the assumption, never directly tested, that rod-cone electrical coupling is abolished by deletion of this connexin isoform. We previously showed that when wild type mouse cones couple to rods, their apparent dynamic range is extended toward lower light intensities, with the appearance of large responses to dim flashes (up to several mV) originating in rods. Here we recorded from the cones of Cx36del[LacZ]/del[LacZ] mice and found that dim flashes of the same intensity evoked at most small sub-millivolt responses. Moreover, these residual responses originated in the cones themselves, since: (i) their spectral preference matched that of the recorded cone and not of rods, (ii) their time-to-peak was shorter than in coupled wild type cones, (iii) a pharmacological block of gap junctions did not reduce their amplitude. Taken together, our data show that rod signals are indeed absent in the cones of Cx36 knockout mice. This study is the first direct demonstration that Cx36 is crucial for the assembly of functional rod-cone gap junctional channels, implying that its genetic deletion is a reliable experimental approach to eliminate rod-cone coupling.


Author(s):  
Camillo Peracchia ◽  
Stephen J. Girsch

The fiber cells of eye lens communicate directly with each other by exchanging ions, dyes and metabolites. In most tissues this type of communication (cell coupling) is mediated by gap junctions. In the lens, the fiber cells are extensively interconnected by junctions. However, lens junctions, although morphologically similar to gap junctions, differ from them in a number of structural, biochemical and immunological features. Like gap junctions, lens junctions are regions of close cell-to-cell apposition. Unlike gap junctions, however, the extracellular gap is apparently absent in lens junctions, such that their thickness is approximately 2 nm smaller than that of typical gap junctions (Fig. 1,c). In freeze-fracture replicas, the particles of control lens junctions are more loosely packed than those of typical gap junctions (Fig. 1,a) and crystallize, when exposed to uncoupling agents such as Ca++, or H+, into pseudo-hexagonal, rhombic (Fig. 1,b) and orthogonal arrays with a particle-to-particle spacing of 6.5 nm. Because of these differences, questions have been raised about the interpretation of the lens junctions as communicating junctions, in spite of the fact that they are the only junctions interlinking lens fiber cells.


Author(s):  
W. J. Larsen ◽  
R. Azarnia ◽  
W. R. Loewenstein

Although the physiological significance of the gap junction remains unspecified, these membrane specializations are now recognized as common to almost all normal cells (excluding adult striated muscle and some nerve cells) and are found in organisms ranging from the coelenterates to man. Since it appears likely that these structures mediate the cell-to-cell movement of ions and small dye molecules in some electrical tissues, we undertook this study with the objective of determining whether gap junctions in inexcitable tissues also mediate cell-to-cell coupling.To test this hypothesis, a coupling, human Lesh-Nyhan (LN) cell was fused with a non-coupling, mouse cl-1D cell, and the hybrids, revertants, and parental cells were analysed for coupling with respect both to ions and fluorescein and for membrane junctions with the freeze fracture technique.


1998 ◽  
Vol 329 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Paola D'ANDREA ◽  
Alessandra CALABRESE ◽  
Micaela GRANDOLFO

Intercellular communication allows the co-ordination of cell metabolism between tissues as well as sensitivity to extracellular stimuli. Paracrine stimulation and cell-to-cell coupling through gap junctions induce the formation of complex cellular networks that favour the intercellular exchange of nutrients and second messengers. Heterologous intercellular communication was studied in co-cultures of articular chondrocytes and HIG-82 synovial cells by measuring mechanically induced cytosolic changes in Ca2+ ion levels by digital fluorescence video imaging. In confluent co-cultures, mechanical stimulation induced intercellular Ca2+ waves that propagated to both cell types with similar kinetics. Intercellular wave spreading was inhibited by 18α-glycyrrhetinic acid and by treatments inhibiting the activation of purinoreceptors, suggesting that intercellular signalling between these two cell types occurs both through gap junctions and ATP-mediated paracrine stimulation. In rheumatoid arthritis the formation of the synovial pannus induces structural changes at the chondrosynovial junction, where chondrocyte and synovial cells come into close apposition: these results provide the first evidence for direct intercellular communication between these two cell types.


2006 ◽  
Vol 290 (3) ◽  
pp. C691-C701 ◽  
Author(s):  
Madalina Condrescu ◽  
John P. Reeves

In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain Δ(241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl-β-cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl-β-cyclodextrin (Me-β-CD) stimulated NCX activity by ∼70%. The activity of the Δ(241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me-β-CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation.


2000 ◽  
Vol 113 (8) ◽  
pp. 1365-1372 ◽  
Author(s):  
H. Niessen ◽  
H. Harz ◽  
P. Bedner ◽  
K. Kramer ◽  
K. Willecke

Intercellular propagation of signals through connexin32-containing gap junctions is of major importance in physiological processes like nerve activity-dependent glucose mobilization in liver parenchymal cells and enzyme secretion from pancreatic acinar cells. In these cells, as in other organs, more than one type of connexin is expressed. We hypothesized that different permeabilities towards second messenger molecules could be one of the reasons for connexin diversity. In order to investigate this, we analyzed transmission of inositol 1,4,5-trisphosphate-mediated calcium waves in FURA-2-loaded monolayers of human HeLa cells expressing murine connexin26, -32 or -43. Gap junction-mediated cell coupling in different connexin-transfected HeLa cells was standardized by measuring the spreading of microinjected Mn(2+) that led to local quenching of FURA-2 fluorescence. Microinjection of inositol 1,4,5-trisphosphate into confluently growing HeLa connexin32 transfectants induced propagation of a Ca(2+) wave from the injected cell to neighboring cells that was at least three- to fourfold more efficient than in HeLa Cx26 cells and about 2.5-fold more efficient than in HeLa Cx43 transfectants. Our results support the notion that diffusion of inositol 1,4,5-trisphosphate through connexin32-containing gap junctions is essential for the optimal physiological response, for example by recruiting liver parenchymal cells that contain subthreshold levels of this short lived second messenger.


Development ◽  
2000 ◽  
Vol 127 (5) ◽  
pp. 945-956 ◽  
Author(s):  
J.M. Collinson ◽  
R.E. Hill ◽  
J.D. West

Chimaeric mice were made by aggregating Pax6(−/−) and wild-type mouse embryos, in order to study the interaction between the optic vesicle and the prospective lens epithelium during early stages of eye development. Histological analysis of the distribution of homozygous mutant cells in the chimaeras showed that the cell-autonomous removal of Pax6(−/−) cells from the lens, shown previously at E12.5, is nearly complete by E9.5. Most mutant cells are eliminated from an area of facial epithelium wider than, but including, the developing lens placode. This result suggests a role for Pax6 in maintaining a region of the facial epithelium that has the tissue competence to undergo lens differentiation. Segregation of wild-type and Pax6(−/−) cells occurs in the optic vesicle at E9.5 and is most likely a result of different adhesive properties of wild-type and mutant cells. Also, proximo-distal specification of the optic vesicle (as assayed by the elimination of Pax6(−/−) cells distally), is disrupted in the presence of a high proportion of mutant cells. This suggests that Pax6 operates during the establishment of patterning along the proximo-distal axis of the vesicle. Examination of chimaeras with a high proportion of mutant cells showed that Pax6 is required in the optic vesicle for maintenance of contact with the overlying lens epithelium. This may explain why Pax6(−/−) optic vesicles are inefficient at inducing a lens placode. Contact is preferentially maintained when the lens epithelium is also wild-type. Together, these results demonstrate requirements for functional Pax6 in both the optic vesicle and surface epithelia in order to mediate the interactions between the two tissues during the earliest stages of eye development.


1986 ◽  
Vol 6 (4) ◽  
pp. 1296-1303
Author(s):  
B Aronow ◽  
P Hollingsworth ◽  
J Patrick ◽  
B Ullman

From a mutagenized population of wild-type mouse (S49) T-lymphoma cells, a clone, 80-5D2, was isolated in a single step by virtue of its ability to survive in 80 nM 5-fluorouridine. Unlike previously isolated nucleoside transport-deficient cell lines (A. Cohen, B. Ullman, and D. W. Martin, Jr., J. Biol. Chem. 254:112-116, 1979), 80-5D2 cells were only slightly less sensitive to growth inhibition by a variety of cytotoxic nucleosides and were capable of proliferating in hypoxanthine-amethopterin-thymidine-containing medium. The molecular basis for the phenotype of 80-5D2 cells was incomplete deficiency in the ability of the mutant cells to translocate nucleosides across the plasma membrane. Interestingly, mutant cells were more capable than wild-type cells of transporting the nucleobase hypoxanthine. Residual transport of adenosine into 80-5D2 cells was just as sensitive to inhibition by nucleosides and more sensitive to inhibition by hypoxanthine than that in wild-type cells, indicating that the phenomena of ligand binding and translocation can be uncoupled genetically. The 80-5D2 cells lacked cell surface binding sites for the potent inhibitor of nucleoside transport p-nitrobenzylthioinosine (NBMPR) and, consequently, were largely resistant to the physiological effects of NBMPR. However, the altered transporter retained its sensitivity to dipyridamole, another inhibitor of nucleoside transport. The biochemical phenotype of the 80-5D2 cell line supports the hypothesis that the determinants that comprise the nucleoside carrier site, the hypoxanthine carrier site, the NBMPR binding site, and the dipyridamole binding site of the nucleoside transport function of mouse S49 cells are genetically distinguishable.


2013 ◽  
Vol 305 (4) ◽  
pp. G303-G313 ◽  
Author(s):  
Juraj Rievaj ◽  
Wanling Pan ◽  
Emmanuelle Cordat ◽  
R. Todd Alexander

Intestinal calcium (Ca2+) absorption occurs via paracellular and transcellular pathways. Although the transcellular route has been extensively studied, mechanisms mediating paracellular absorption are largely unexplored. Unlike passive diffusion, secondarily active paracellular Ca2+ uptake occurs against an electrochemical gradient with water flux providing the driving force. Water movement is dictated by concentration differences that are largely determined by Na+ fluxes. Consequently, we hypothesized that Na+ absorption mediates Ca2+ flux. NHE3 is central to intestinal Na+ absorption. NHE3 knockout mice (NHE3−/−) display impaired intestinal Na+, water, and Ca2+ absorption. However, the mechanism mediating this latter abnormality is not clear. To investigate this, we used Ussing chambers to measure net Ca2+ absorption across different segments of wild-type mouse intestine. The cecum was the only segment with net Ca2+ absorption. Quantitative RT-PCR measurements revealed cecal expression of all genes implicated in intestinal Ca2+ absorption, including NHE3. We therefore employed this segment for further studies. Inhibition of NHE3 with 100 μM 5-( N-ethyl- N-isopropyl) amiloride decreased luminal-to-serosal and increased serosal-to-luminal Ca2+ flux. NHE3−/− mice had a >60% decrease in luminal-to-serosal Ca2+ flux. Ussing chambers experiments under altered voltage clamps (−25, 0, +25 mV) showed decreased transcellular and secondarily active paracellular Ca2+ absorption in NHE3−/− mice relative to wild-type animals. Consistent with this, cecal Trpv6 expression was diminished in NHE3−/− mice. Together these results implicate NHE3 in intestinal Ca2+ absorption and support the theory that this is, at least partially, due to the role of NHE3 in Na+ and water absorption.


Sign in / Sign up

Export Citation Format

Share Document