endosome escape
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1233
Author(s):  
Dongyoon Kim ◽  
Quoc-Viet Le ◽  
Yina Wu ◽  
Jinwon Park ◽  
Yu-Kyoung Oh

Genome-editing technology has emerged as a potential tool for treating incurable diseases for which few therapeutic modalities are available. In particular, discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system together with the design of single-guide RNAs (sgRNAs) has sparked medical applications of genome editing. Despite the great promise of the CRISPR/Cas system, its clinical application is limited, in large part, by the lack of adequate delivery technology. To overcome this limitation, researchers have investigated various systems, including viral and nonviral vectors, for delivery of CRISPR/Cas and sgRNA into cells. Among nonviral delivery systems that have been studied are nanovesicles based on lipids, polymers, peptides, and extracellular vesicles. These nanovesicles have been designed to increase the delivery of CRISPR/Cas and sgRNA through endosome escape or using various stimuli such as light, pH, and environmental features. This review covers the latest research trends in nonviral, nanovesicle-based delivery systems that are being applied to genome-editing technology and suggests directions for future progress.



2020 ◽  
Vol 12 (35) ◽  
pp. 39602-39611 ◽  
Author(s):  
Isom B. Kelly ◽  
R. Brock Fletcher ◽  
James R. McBride ◽  
Sharon M. Weiss ◽  
Craig L. Duvall


2020 ◽  
Vol 117 (24) ◽  
pp. 13699-13707 ◽  
Author(s):  
Mercedes Hernando-Pérez ◽  
Natalia Martín-González ◽  
Marta Pérez-Illana ◽  
Maarit Suomalainen ◽  
Gabriela N. Condezo ◽  
...  

Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.



2019 ◽  
Author(s):  
Mercedes Hernando-Pérez ◽  
Natalia Martín-González ◽  
Marta Pérez-Illana ◽  
Maarit Suomalainen ◽  
Philomena Ostapchuk ◽  
...  

AbstractAdenovirus minor coat protein VI contains a membrane-disrupting peptide which is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and non-infectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wildtype (Ad5-wt) particles. Cryo-EM difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.Significance StatementCorrect assembly of an adenovirus infectious particle involves the highly regulated interaction of more than ten different proteins as well as the viral genome. Here we examine the interplay between two of these proteins: the major core protein VII, involved in genome condensation, and the multifunctional minor coat protein VI. Protein VI binds to the inner surface of adenovirus hexons (trimers of the major coat protein) and contains a lytic peptide which must be released during entry to ensure endosome rupture. We present data supporting a dynamic competition model between proteins VI and VII for hexon binding during assembly. This competition facilitates the release of the lytic peptide from the hexon cavity and ensures virus escape from the early endosome.



2019 ◽  
Vol 15 (2) ◽  
pp. 373-381 ◽  
Author(s):  
Jing Liu ◽  
Xixi Ai ◽  
Huaping Zhang ◽  
Weiling Zhuo ◽  
Peng Mi


2018 ◽  
Author(s):  
Michaela Conley ◽  
Marion McElwee ◽  
Liyana Azmi ◽  
Mads Gabrielsen ◽  
Olwyn Byron ◽  
...  

AbstractTo initiate the infectious process, many viruses enter their host cells by triggering endocytosis following receptor engagement. The mechanism by which non-enveloped viruses, such as the caliciviruses, escape the endosome is however poorly understood. TheCaliciviridaeinclude many important human and animal pathogens, most notably norovirus, the cause of winter vomiting disease. Here we show that VP2, a minor capsid protein encoded by all caliciviruses, forms a large portal assembly at a unique three-fold symmetry axis following receptor engagement. This feature surrounds an open pore in the capsid shell. We hypothesise that the VP2 portal complex is the means by which the virus escapes the endosome, pene-trating the endosomal membrane to release the viral genome into the cytoplasm. Cryogenic electron microscopy (cryoEM) and asymmetric reconstruction were used to investigate structural changes in the capsid of feline calicivirus (FCV) that occur when the virus binds to its cellular receptor junctional adhesion molecule-A (fJAM-A). Near atomic-resolution structures were calculated for the native virion alone and decorated with soluble receptor fragments. We present atomic models of the major capsid protein VP1 in the presence and absence of fJAM-A, revealing the contact interface and conformational changes brought about by the interaction. Furthermore, we have calculated an atomic model of the portal protein VP2 and revealed the structural changes in VP1 that lead to pore formation. While VP2 was known to be critical for the production of infectious virus, its function has been hitherto undetermined. Our finding that VP2 assembles a portal that is likely responsible for endosome escape represents a major step forward in our understanding of both theCaliciviridaeand icosahedral RNA containing viruses in general.



Nanomedicine ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. 907-919 ◽  
Author(s):  
Yu Wan ◽  
Peter M Moyle ◽  
Michelle P Christie ◽  
Istvan Toth


2015 ◽  
Vol 9 (S9) ◽  
Author(s):  
Marianne Gillard ◽  
Zhongfan Jia ◽  
Jeff Hou ◽  
Michael Song ◽  
Peter P Gray ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document