scholarly journals Dynamic competition for hexon binding between core protein VII and lytic protein VI promotes adenovirus maturation and entry

2020 ◽  
Vol 117 (24) ◽  
pp. 13699-13707 ◽  
Author(s):  
Mercedes Hernando-Pérez ◽  
Natalia Martín-González ◽  
Marta Pérez-Illana ◽  
Maarit Suomalainen ◽  
Gabriela N. Condezo ◽  
...  

Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.

2019 ◽  
Author(s):  
Mercedes Hernando-Pérez ◽  
Natalia Martín-González ◽  
Marta Pérez-Illana ◽  
Maarit Suomalainen ◽  
Philomena Ostapchuk ◽  
...  

AbstractAdenovirus minor coat protein VI contains a membrane-disrupting peptide which is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and non-infectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wildtype (Ad5-wt) particles. Cryo-EM difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.Significance StatementCorrect assembly of an adenovirus infectious particle involves the highly regulated interaction of more than ten different proteins as well as the viral genome. Here we examine the interplay between two of these proteins: the major core protein VII, involved in genome condensation, and the multifunctional minor coat protein VI. Protein VI binds to the inner surface of adenovirus hexons (trimers of the major coat protein) and contains a lytic peptide which must be released during entry to ensure endosome rupture. We present data supporting a dynamic competition model between proteins VI and VII for hexon binding during assembly. This competition facilitates the release of the lytic peptide from the hexon cavity and ensures virus escape from the early endosome.


1988 ◽  
Vol 8 (9) ◽  
pp. 3955-3959 ◽  
Author(s):  
C Egan ◽  
T N Jelsma ◽  
J A Howe ◽  
S T Bayley ◽  
B Ferguson ◽  
...  

The binding sites for the 300-, 107-, and 105-kilodalton cellular proteins which associate with human adenovirus type 5 E1A products were studied with E1A deletion mutants. All appeared to bind to the amino-terminal half of E1A products in regions necessary for oncogenic transformation. These results suggest that these cellular species may be important for the biological activity of E1A products.


1985 ◽  
Vol 63 (9) ◽  
pp. 941-952 ◽  
Author(s):  
Philip E. Branton ◽  
Mike Evelegh ◽  
David T. Rowe ◽  
Frank L. Graham ◽  
Silvia Bacchetti

We have developed monoclonal antibodies which react specifically with the human adenovirus type 5 early region 2A 72-kdalton phosphoprotein (72 kDa) and its 48-kdalton proteolytic cleavage product (48 kDa) and have used these antibodies to study a number of properties of these viral polyeptides. Fluorescent antibody staining indicated that the 72 kDa was found almost entirely in the nucleus, generally in discreet patches. Preparations of the 72 kDa, purified by immunoprecipitation or by single-stranded DNA-cellulose column chromatography and incubated with [γ-32P]ATP, were found to contain protein kinase activity. Using photoaffinity labelling with 8-azido-[α-32P]ATP, the 72 kDa was shown to be an ATP-binding protein. The ATP-binding site was probably in the amino terminal region because the 48 kDa which lacks approximately 120 residues at the amino terminus failed to bind ATP. Experiments carried out with immunoprecipitates from wild-type and temperature-sensitive (ts125) infected cells suggested that the ts mutant-induced kinase activity was not more thermolabile than the wild-type protein. Thus although the present results indicated that protein kinase activity is associated with the 72 kDa, it is still unclear whether such activity is intrinsic to the 72 kDa or present in an enzyme associated with it. While it is probably not intrinsic to the carboxy terminal region affected by the ts125 mutation, it is still possible that it resides in an amino terminal domain.


1988 ◽  
Vol 8 (9) ◽  
pp. 3955-3959 ◽  
Author(s):  
C Egan ◽  
T N Jelsma ◽  
J A Howe ◽  
S T Bayley ◽  
B Ferguson ◽  
...  

The binding sites for the 300-, 107-, and 105-kilodalton cellular proteins which associate with human adenovirus type 5 E1A products were studied with E1A deletion mutants. All appeared to bind to the amino-terminal half of E1A products in regions necessary for oncogenic transformation. These results suggest that these cellular species may be important for the biological activity of E1A products.


1996 ◽  
Vol 75 (02) ◽  
pp. 313-317 ◽  
Author(s):  
D J Kim ◽  
A Girolami ◽  
H L James

SummaryNaturally occurring plasma factor XFriuli (pFXFr) is marginally activated by both the extrinsic and intrinsic coagulation pathways and has impaired catalytic potential. These studies were initiated to obtain confirmation that this molecule is multi-functionally defective due to the substitution of Ser for Pro at position 343 in the catalytic domain. By the Nelson-Long site-directed mutagenesis procedure a construct of cDNA in pRc/CMV was derived for recombinant factor XFriuli (rFXFr) produced in human embryonic (293) kidney cells. The rFXFr was purified and shown to have a molecular size identical to that of normal plasma factor X (pFX) by gel electrophoretic, and amino-terminal sequencing revealed normal processing cleavages. Using recombinant normal plasma factor X (rFXN) as a reference, the post-translational y-carboxy-glutamic acid (Gla) and (β-hydroxy aspartic acid (β-OH-Asp) content of rFXFr was over 85% and close to 100%, respectively, of expected levels. The specific activities of rFXFr in activation and catalytic assays were the same as those of pFXFr. Molecular modeling suggested the involvement of a new H-bond between the side-chains of Ser-343 and Thr-318 as they occur in anti-parallel (3-pleated sheets near the substrate-binding pocket of pFXFr. These results support the conclusion that the observed mutation in pFXFr is responsible for its dysfunctional activation and catalytic potentials, and that it accounts for the moderate bleeding tendency in the homozygous individuals who possess this variant procoagulant.


Sign in / Sign up

Export Citation Format

Share Document