asparaginyl endopeptidase
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 16)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Dingpeng Zhang ◽  
Zhen Wang ◽  
Side Hu ◽  
Ning-Yu Chan ◽  
Heng Tai Liew ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
N. Bhaskaran ◽  
E. Schneider ◽  
F. Faddoul ◽  
A. Paes da Silva ◽  
R. Asaad ◽  
...  

AbstractResidual systemic inflammation and mucosal immune dysfunction persist in people living with HIV, despite treatment with combined anti-retroviral therapy, but the underlying immune mechanisms are poorly understood. Here we report that the altered immune landscape of the oral mucosa of HIV-positive patients on therapy involves increased TLR and inflammasome signaling, localized CD4+ T cell hyperactivation, and, counterintuitively, enrichment of FOXP3+ T cells. HIV infection of oral tonsil cultures in vitro causes an increase in FOXP3+ T cells expressing PD-1, IFN-γ, Amphiregulin and IL-10. These cells persist even in the presence of anti-retroviral drugs, and further expand when stimulated by TLR2 ligands and IL-1β. Mechanistically, IL-1β upregulates PD-1 expression via AKT signaling, and PD-1 stabilizes FOXP3 and Amphiregulin through a mechanism involving asparaginyl endopeptidase, resulting in FOXP3+ cells that are incapable of suppressing CD4+ T cells in vitro. The FOXP3+ T cells that are abundant in HIV-positive patients are phenotypically similar to the in vitro cultured, HIV-responsive FOXP3+ T cells, and their presence strongly correlates with CD4+ T cell hyper-activation. This suggests that FOXP3+ T cell dysregulation might play a role in the mucosal immune dysfunction of HIV patients on therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shan-Shan Wang ◽  
Zi-Kai Liu ◽  
Jing-Jing Liu ◽  
Qing Cheng ◽  
Yan-Xia Wang ◽  
...  

Abstract Background Discovery of early-stage biomarkers is a long-sought goal of Alzheimer’s disease (AD) diagnosis. Age is the greatest risk factor for most AD and accumulating evidence suggests that age-dependent elevation of asparaginyl endopeptidase (AEP) in the brain may represent a new biological marker for predicting AD. However, this speculation remains to be explored with an appropriate assay method because mammalian AEP exists in many organs and the level of AEP in body fluid isn’t proportional to its concentration in brain parenchyma. To this end, we here modified gold nanoparticle (AuNPs) into an AEP-responsive imaging probe and choose transgenic APPswe/PS1dE9 (APP/PS1) mice as an animal model of AD. Our aim is to determine whether imaging of brain AEP can be used to predict AD pathology. Results This AEP-responsive imaging probe AuNPs-Cy5.5-A&C consisted of two particles, AuNPs-Cy5.5-AK and AuNPs-Cy5.5-CABT, which were respectively modified with Ala–Ala–Asn–Cys–Lys (AK) and 2-cyano-6-aminobenzothiazole (CABT). We showed that AuNPs-Cy5.5-A&C could be selectively activated by AEP to aggregate and emit strong fluorescence. Moreover, AuNPs-Cy5.5-A&C displayed a general applicability in various cell lines and its florescence intensity correlated well with AEP activity in these cells. In the brain of APP/PS1 transgenic mice , AEP activity was increased at an early disease stage of AD that precedes formation of senile plaques and cognitive impairment. Pharmacological inhibition of AEP with δ-secretase inhibitor 11 (10 mg kg−1, p.o.) reduced production of β-amyloid (Aβ) and ameliorated memory loss. Therefore, elevation of AEP is an early sign of AD onset. Finally, we showed that live animal imaging with this AEP-responsive probe could monitor the up-regulated AEP in the brain of APP/PS1 mice. Conclusions The current work provided a proof of concept that assessment of brain AEP activity by in vivo imaging assay is a potential biomarker for early diagnosis of AD. Graphical abstract


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ju Wang ◽  
Hui-Jie Hu ◽  
Zi-Kai Liu ◽  
Jing-Jing Liu ◽  
Shan-Shan Wang ◽  
...  

Abstract Background Currently, there is no cure for Alzheimer’s disease (AD). Therapeutics that can modify the early stage of AD are urgently needed. Recent studies have shown that the pathogenesis of AD is closely regulated by an endo/lysosomal asparaginyl endopeptidase (AEP). Inhibition of AEP has been reported to prevent neural degeneration in transgenic mouse models of AD. However, more than 90% of AD cases are age-related sporadic AD rather than hereditary AD. The therapeutic efficacy of AEP inhibition in ageing-associated sporadic AD remains unknown. Methods The senescence-accelerated mouse prone 8 (SAMP8) was chosen as an approximate model of sporadic AD and treated with a selective AEP inhibitor,: δ-secretase inhibitor 11. Activation of AEP was determined by enzymatic activity assay. Concentration of soluble amyloid β (Aβ) in the brain was determined by ELISA. Morris water maze test was performed to assess the learning and memory-related cognitive ability. Pathological changes in the brain were explored by morphological and western blot analyses. Results The enzymatic activity of AEP in the SAMP8 mouse brain was significantly higher than that in the age-matched SAMR1 mice. The half maximal inhibitory concentration (IC50) for δ-secretase inhibitor 11 to inhibit AEP in vitro is was around 150 nM. Chronic treatment with δ-secretase inhibitor 11 markedly decreased the brain AEP activity, reduced the generation of Aβ1–40/42 and ameliorated memory loss. The inhibition of AEP with this reagent not only reduced the AEP-cleaved tau fragments and tau hyperphosphorylation, but also attenuated neuroinflammation in the form of microglial activation. Moreover, treatment with δ-secretase inhibitor 11 prevented the synaptic loss and alleviated dendritic disruption in SAMP8 mouse brain. Conclusions Pharmacological inhibition of AEP can intervene and prevent AD-like pathological progress in the model of sporadic AD. The up-regulated AEP in the brain could be a promising target for early treatment of AD. The δ-secretase inhibitor 11 can be used as a lead compound for translational development of AD treatment.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 23105-23112
Author(s):  
Xinya Hemu ◽  
Xiaohong Zhang ◽  
Giang K. T. Nguyen ◽  
Janet To ◽  
Aida Serra ◽  
...  

Butelase-1, an asparaginyl endopeptidase or legumain, is the prototypical and fastest known Asn/Asp-specific peptide ligase that could be used for improving other enzymes by catalyzing simple and efficient end-to-end circularization.


2020 ◽  
Author(s):  
Samuel G. Nonis ◽  
Joel Haywood ◽  
Jason W. Schmidberger ◽  
Charles S. Bond ◽  
Joshua S. Mylne

AbstractOver 30 years ago, an intriguing post-translational modification was discovered to be responsible for creating concanavalin A (conA), a carbohydrate-binding protein found in the seeds of jack bean (Canavalia ensiformis) and commercially used for carbohydrate chromatography. Biosynthesis of conA involves what was then an unprecedented rearrangement in amino acid sequence, whereby the N-terminal half of the gene-encoded conA precursor is swapped to become the C-terminal half of conA. The cysteine protease, asparaginyl endopeptidase (AEP), was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of conA circular permutation, we generated a recombinant jack bean conA precursor (pro-conA) plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 Å and 2.7 Å respectively. By reconstituting the biosynthesis of conA in vitro, we prove CeAEP1 alone can perform both the cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both these reactions. Biophysical assays illustrated that conA is more thermally and pH stable than pro-conA, consistent with fewer intermolecular interactions between subunits in the pro-conA crystal structure. These findings elucidate the consequences of circular permutation in the only post-translation example known to occur in nature.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8825-8834 ◽  
Author(s):  
Xinya Hemu ◽  
Abbas El Sahili ◽  
Side Hu ◽  
Xiaohong Zhang ◽  
Aida Serra ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junqiao Du ◽  
Kuok Yap ◽  
Lai Yue Chan ◽  
Fabian B. H. Rehm ◽  
Fong Yang Looi ◽  
...  

2020 ◽  
Author(s):  
Simon Tang ◽  
Davide Cardella ◽  
Alexander J. Lander ◽  
Xuefei Li ◽  
Yu-Hsuan Tsai ◽  
...  

Transpeptidases are ideal biocatalysts for site-specific peptide and protein labeling, whereas reactions that target N-terminus cysteine with commercially available reagents have become common practice. However, a versatile approach that allows bioconjugation at the terminus of choice (N or C), while avoiding the use of backbone-modified substrates (<i>e.g.</i> depsipeptide) or large excess of reagent, is highly desirable. Aiming to meet these benchmarks, we have combined the advantages of asparaginyl endopeptidase (AEP) catalysis with a N-terminal cysteine trapping reaction and created a chemo-enzymatic labeling system. In this approach, polypeptide with a Asn-Cys-Leu recognition sequence are ligated with a counterpart possessing an N-terminal Gly-Leu by AEP; the byproduct Cys-Leu is subsequently trapped by a stable and inexpensive scavenger, 2-formyl phenylboronic acid (FPBA), to yield an inert thiazolidine derivative, thereby driving the reaction forward to product formation. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP ligation/FPBA coupling system was further demonstrated by site-specific labeling the N- or C-termini of various proteins.


2020 ◽  
Author(s):  
Simon Tang ◽  
Davide Cardella ◽  
Alexander J. Lander ◽  
Xuefei Li ◽  
Yu-Hsuan Tsai ◽  
...  

Transpeptidases are ideal biocatalysts for site-specific peptide and protein labeling, whereas reactions that target N-terminus cysteine with commercially available reagents have become common practice. However, a versatile approach that allows bioconjugation at the terminus of choice (N or C), while avoiding the use of backbone-modified substrates (<i>e.g.</i> depsipeptide) or large excess of reagent, is highly desirable. Aiming to meet these benchmarks, we have combined the advantages of asparaginyl endopeptidase (AEP) catalysis with a N-terminal cysteine trapping reaction and created a chemo-enzymatic labeling system. In this approach, polypeptide with a Asn-Cys-Leu recognition sequence are ligated with a counterpart possessing an N-terminal Gly-Leu by AEP; the byproduct Cys-Leu is subsequently trapped by a stable and inexpensive scavenger, 2-formyl phenylboronic acid (FPBA), to yield an inert thiazolidine derivative, thereby driving the reaction forward to product formation. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP ligation/FPBA coupling system was further demonstrated by site-specific labeling the N- or C-termini of various proteins.


Sign in / Sign up

Export Citation Format

Share Document