scholarly journals Reconciling bubble nucleation in explosive eruptions with geospeedometers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sahand Hajimirza ◽  
Helge M. Gonnermann ◽  
James E. Gardner

AbstractMagma from Plinian volcanic eruptions contains an extraordinarily large numbers of bubbles. Nucleation of those bubbles occurs because pressure decreases as magma rises to the surface. As a consequence, dissolved magmatic volatiles, such as water, become supersaturated and cause bubbles to nucleate. At the same time, diffusion of volatiles into existing bubbles reduces supersaturation, resulting in a dynamical feedback between rates of nucleation due to magma decompression and volatile diffusion. Because nucleation rate increases with supersaturation, bubble number density (BND) provides a proxy record of decompression rate, and hence the intensity of eruption dynamics. Using numerical modeling of bubble nucleation, we reconcile a long-standing discrepancy in decompression rate estimated from BND and independent geospeedometers. We demonstrate that BND provides a record of the time-averaged decompression rate that is consistent with independent geospeedometers, if bubble nucleation is heterogeneous and facilitated by magnetite crystals.

2020 ◽  
Author(s):  
Francisco Cáceres ◽  
Fabian Wadsworth ◽  
Bettina Scheu ◽  
Mathieu Colombier ◽  
Claudio Madonna ◽  
...  

<p>Magma degassing dynamics play an important role controlling the explosivity of volcanic eruptions. Some of the largest explosive eruptions in history have been fed by silica-rich magmas in volcanic systems with complex dynamics of volatiles degassing. Degassing of magmatic water drives bubble nucleation and growth, which in turn increases magma buoyancy and results in magma ascent and an eventual eruption. While micro- to milli-meter sized crystals are known to cause heterogeneous bubble nucleation and to facilitate bubble coalescence, the effects of nanolites remains mostly unexplored. Nanolites have been hypothesized to be a primary control on the eruptive style of silicic volcanoes, however the mechanisms behind this control remains unclear.</p><p>Here we use an experimental approach to show how nanolites dramatically increase the bubble number density in a degassing silicic magma compared to the same magma without nanolites. The experiments were conducted using both nanolite-free and nanolite-bearing rhyolitic glass with different low initial water content. Using an Optical Dilatometer at 1 bar ambient pressure, cylindrical samples were heated at variable rates (1-30 °C min<sup>-1</sup>) to final temperatures of 820-1000 °C. This method allowed us to continuously monitor the volume, and hence porosity evolution in time. X-ray computed microtomography (µCT) and Scanning Electron Microscope (SEM) analyses revealed low and high bubble number densities for the nanolite-free and nanolite-bearing samples respectively.</p><p>Comparing vesicle number densities of natural volcanic rocks from explosive eruptions and our experimental results, we speculate that some very high naturally occurring bubble number densities could be associated with nanolites. We use a magma ascent model with P-T-H<sub>2</sub>O starting conditions relevant for known silicic eruptions to further underpin that such an increase in bubble number density caused driven by the presence of nanolites can feasibly turn an effusive eruption to an eventually explosive behavior.</p>


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 997-1001 ◽  
Author(s):  
Francisco Cáceres ◽  
Fabian B. Wadsworth ◽  
Bettina Scheu ◽  
Mathieu Colombier ◽  
Claudio Madonna ◽  
...  

Abstract Degassing dynamics play a crucial role in controlling the explosivity of magma at erupting volcanoes. Degassing of magmatic water typically involves bubble nucleation and growth, which drive magma ascent. Crystals suspended in magma may influence both nucleation and growth of bubbles. Micron- to centimeter-sized crystals can cause heterogeneous bubble nucleation and facilitate bubble coalescence. Nanometer-scale crystalline phases, so-called “nanolites”, are an underreported phenomenon in erupting magma and could exert a primary control on the eruptive style of silicic volcanoes. Yet the influence of nanolites on degassing processes remains wholly uninvestigated. In order to test the influence of nanolites on bubble nucleation and growth dynamics, we use an experimental approach to document how nanolites can increase the bubble number density and affect growth kinetics in a degassing nanolite-bearing silicic magma. We then examine a compilation of these values from natural volcanic rocks from explosive eruptions leading to the inference that some very high naturally occurring bubble number densities could be associated with the presence of magmatic nanolites. Finally, using a numerical magma ascent model, we show that for reasonable starting conditions for silicic eruptions, an increase in the resulting bubble number density associated with nanolites could push an eruption that would otherwise be effusive into the conditions required for explosive behavior.


2020 ◽  
Vol 6 (39) ◽  
pp. eabb0413 ◽  
Author(s):  
Danilo Di Genova ◽  
Richard A. Brooker ◽  
Heidy M. Mader ◽  
James W. E. Drewitt ◽  
Alessandro Longo ◽  
...  

Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.


Author(s):  
Takuya Hayashida ◽  
Hideki Murakawa ◽  
Hiroshige Kikura ◽  
Masanori Aritomi ◽  
Michitsugu Mori

Velocity measurement using ultrasound has attracted much attention in engineering fields and medical science field. Especially, Ultrasonic velocity profile monitor (UVP) has been in the spotlight in engineering fields, because of its many diagnostic advantages. The major advantage is that UVP can obtain instantaneous velocity distributions on beam line by measuring Doppler shift frequencies of echo signals. And UVP is applicable to existing pipes, because it is non-contact measurement technique. In recent years, various studies about UVP have been done, and UVP has already been put to practical use in engineering plants. The authors especially focused on two-phase flow measurement using ultrasound. Previously, we developed a way to measure bubbly flow using UVP. By this method, we are able to separate liquid information from bubbles information to some degrees. However, when the bubble number density is low, a problem occurs. Because the effect of liquid information is strong under that condition. From this fact, we applied the ultrasound time domain correlation method (UTDC) to two-phase flow measurement. This method is our original technique to measure the velocity distribution. It is based on the cross-correlation between two consecutive echoes of ultrasonic pulses. With this method, we can separate liquid information from bubble information even when the bubble number density is low, because reflected signals depend on the size of reflectors and frequency of ultrasound. In this study, the authors applied the UTDC to two-phase flow measurements in rectangular channel using a multi-wave ultrasonic transducer (TDX). The multi-wave TDX has two kinds of basic frequencies. One is 2MHz for the velocity of rising bubbles and the other is 8MHz for the liquid velocity. So it enables us to measure the velocity of the liquid and that of bubbles at the same point and time. The 2MHz ultrasonic element of TDX has 10mm diameter and the 8MHz ultrasonic element has 3mm diameter.


2011 ◽  
Vol 57 (204) ◽  
pp. 629-638 ◽  
Author(s):  
J.M. Fegyveresi ◽  
R.B. Alley ◽  
M.K. Spencer ◽  
J.J. Fitzpatrick ◽  
E.J. Steig ◽  
...  

AbstractA surface cooling of ∼1.7°C occurred over the ∼two millennia prior to ∼1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Number-density is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ∼1.7°C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.


Author(s):  
De Ming Wang ◽  
David Greif

A finite volume, pressure based semi-implicit algorithm is developed for solving a multi-fluid system of any number of phases with strong coupling between the phases in mass, momentum and energy transfer. The mass transfer from liquid to vapor due to cavitation is modeled based on a single bubble dynamics (Rayleigh-Plesset equation). In order to model the vapor phase of variable size distribution, or polydispersion, the transport equations of bubble number density and interfacial area are derived from taking the moments of the PDF equation in phase space. The modeling of the result equations are effected through consideration of breakup and coalescence. The k-zeta-f turbulence model is adopted which is found to be particularly effective for predicting near wall effects on the turbulence level. Validation efforts are presented in which comparison with available measurement data are made for a number of cases including constricted channel flow with sharp inlet (I-channel), with smooth inlet (Y-channel), a flash-boiling cavitation set-up, and an actual injector set-up.


Sign in / Sign up

Export Citation Format

Share Document