paranodal junctions
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kazuo Kunisawa ◽  
Nobuhiko Hatanaka ◽  
Takeshi Shimizu ◽  
Kenta Kobayashi ◽  
Yasuyuki Osanai ◽  
...  

AbstractParanodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.


2020 ◽  
Author(s):  
Kazuo Kunisawa ◽  
Nobuhiko Hatanaka ◽  
Takeshi Shimizu ◽  
Kenta Kobayashi ◽  
Yasuyuki Osanai ◽  
...  

Abstract Paranodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc155. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.


2020 ◽  
Author(s):  
Omar de Faria ◽  
Diane S. Nakamura ◽  
Samuel Clemot ◽  
Doyeun Kim ◽  
Mihai Victor Mocanu ◽  
...  

ABSTRACTIn the mature CNS, netrin-1 is expressed by neurons and oligodendrocytes and implicated in the stability of axo-oligodendroglial paranodal junctions. Here we report that the netrin receptor UNC5B is highly expressed by mature oligodendrocytes and enriched at paranodes. We demonstrate that paranodes become disorganized following conditional deletion of UNC5B in oligodendrocytes, with disruption of the interface between glial loops and detachment of loops from the axon. As a result, Caspr1 and Kv1.1 disperse along the axon, internodes fail to lengthen and compact myelin periodicity is reduced. Paranodal and axoglial domain disorganization progressively worsens and a delay in motor learning develops in aged mice lacking oligodendroglial UNC5B. Altered glial loop ultrastructure and reduced levels of claudin-11 and JAM-C tight junction proteins support the conclusion that disruption of autotypic junctions between paranodal loops underlies paranode disorganization. Our findings reveal an essential contribution of oligodendroglial UNC5B at paranodes that is required for the stability of mature myelin.


Neurology ◽  
2018 ◽  
Vol 91 (23) ◽  
pp. 1051-1060 ◽  
Author(s):  
Haruki Koike ◽  
Ryoji Nishi ◽  
Shohei Ikeda ◽  
Yuichi Kawagashira ◽  
Masahiro Iijima ◽  
...  

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a form of chronic neuropathy that is presumably caused by heterogeneous immune-mediated processes. Recent advances in the search for autoantibodies against components expressed at nodal regions, such as the nodes of Ranvier and paranodes, have substantially contributed to clarifying the pathogenesis of CIDP in a subpopulation of patients. In particular, immunoglobulin G4 (IgG4) antibodies to paranodal junction proteins, including neurofascin-155 and contactin-1, have attracted the attention of researchers. Paranodal dissection resulting from the attachment of IgG4 at paranodal junctions and the absence of macrophage-induced demyelination are characteristic pathologic features in patients who have these antibodies. By contrast, the mechanisms of neuropathy in cases with classical macrophage-induced demyelination remain unclear despite the long-standing recognition of this process in CIDP. In addition to complement-dependent damage provoked by autoantibodies, recent studies have shed light on antibody-dependent phagocytosis by macrophages without participation of complements. However, a direct association between specific autoantibodies and macrophage-induced demyelination has not been reported. Electron microscopic examination of longitudinal sections of sural nerve biopsy specimens suggested that macrophages recognize specific sites of myelinated fibers as the initial target of demyelination. The site that macrophages select to initiate myelin breakdown is located around the nodal regions in some patients and internode in others. Hence, it seems that the components that distinguish between the nodal regions and internode play a pivotal role in the behavior of macrophages that initiate phagocytosis of myelin. Further studies are needed to elucidate the mechanisms underlying macrophage-induced demyelination from this perspective.


2018 ◽  
Vol 56 (6) ◽  
pp. 4231-4248 ◽  
Author(s):  
Elena Chierto ◽  
Anne Simon ◽  
Francesca Castoldi ◽  
Delphine Meffre ◽  
Giulia Cristinziano ◽  
...  

2018 ◽  
Vol 33 (10) ◽  
pp. 642-650 ◽  
Author(s):  
Alexander Conant ◽  
Julian Curiel ◽  
Amy Pizzino ◽  
Parisa Sabetrasekh ◽  
Jennifer Murphy ◽  
...  

Leukodystrophies and genetic leukoencephalopathies are a heterogeneous group of heritable disorders that affect the glial-axonal unit. As more patients with unsolved leukodystrophies and genetic leukoencephalopathies undergo next generation sequencing, causative mutations in genes leading to central hypomyelination are being identified. Two such individuals presented with arthrogryposis multiplex congenita, congenital hypomyelinating neuropathy, and central hypomyelination with early respiratory failure. Whole exome sequencing identified biallelic mutations in the CNTNAP1 gene: homozygous c.1163G>C (p.Arg388Pro) and compound heterozygous c.967T>C (p.Cys323Arg) and c.319C>T (p.Arg107*). Sural nerve and quadriceps muscle biopsies demonstrated progressive, severe onion bulb and axonal pathology. By ultrastructural evaluation, septate axoglial paranodal junctions were absent from nodes of Ranvier. Serial brain magnetic resonance images revealed hypomyelination, progressive atrophy, and reduced diffusion in the globus pallidus in both patients. These 2 families illustrate severe progressive peripheral demyelinating neuropathy due to the absence of septate paranodal junctions and central hypomyelination with neurodegeneration in CNTNAP1-associated arthrogryposis multiplex congenita.


2017 ◽  
Vol 3 (2) ◽  
pp. e144 ◽  
Author(s):  
Holger Hengel ◽  
Alex Magee ◽  
Muhammad Mahanjah ◽  
Jean-Michel Vallat ◽  
Robert Ouvrier ◽  
...  

Objective:To explore the phenotypic spectrum and pathophysiology of human disease deriving from mutations in the CNTNAP1 gene.Methods:In a field study on consanguineous Palestinian families, we identified 3 patients carrying homozygous mutations in the CNTNAP1 gene using whole-exome sequencing. An unrelated Irish family was detected by screening the GENESIS database for further CNTNAP1 mutations. Neurophysiology, MRI, and nerve biopsy including electron microscopy were performed for deep phenotyping.Results:We identified 3 novel CNTNAP1 mutations in 5 patients from 2 families: c.2015G>A:p.(Trp672*) in a homozygous state in family 1 and c.2011C>T:p.(Gln671*) in a compound heterozygous state with c.2290C>T:p.(Arg764Cys) in family 2. Affected patients suffered from a severe CNS disorder with hypomyelinating leukodystrophy and peripheral neuropathy of sensory-motor type. Arthrogryposis was present in 2 patients but absent in 3 patients. Brain MRI demonstrated severe hypomyelination and secondary cerebral and cerebellar atrophy as well as a mega cisterna magna and corpus callosum hypoplasia. Nerve biopsy revealed very distinct features with lack of transverse bands at the paranodes and widened paranodal junctional gaps.Conclusions:CNTNAP1 mutations have recently been linked to patients with arthrogryposis multiplex congenita. However, we show that arthrogryposis is not an obligate feature. CNTNAP1-related disorders are foremost severe hypomyelinating disorders of the CNS and the peripheral nervous system. The pathology is partly explained by the involvement of CNTNAP1 in the proper formation and preservation of paranodal junctions and partly by the assumed role of CNTNAP1 as a key regulator in the development of the cerebral cortex.


2016 ◽  
Vol 114 (2) ◽  
pp. E191-E199 ◽  
Author(s):  
Elisa D’Este ◽  
Dirk Kamin ◽  
Francisco Balzarotti ◽  
Stefan W. Hell

We used stimulated emission depletion (STED) superresolution microscopy to analyze the nanoscale organization of 12 glial and axonal proteins at the nodes of Ranvier of teased sciatic nerve fibers. Cytoskeletal proteins of the axon (betaIV spectrin, ankyrin G) exhibit a high degree of one-dimensional longitudinal order at nodal gaps. In contrast, axonal and glial nodal adhesion molecules [neurofascin-186, neuron glial-related cell adhesion molecule (NrCAM)] can arrange in a more complex, 2D hexagonal-like lattice but still feature a ∼190-nm periodicity. Such a lattice-like organization is also found for glial actin. Sodium and potassium channels exhibit a one-dimensional periodicity, with the Nav channels appearing to have a lower degree of organization. At paranodes, both axonal proteins (betaII spectrin, Caspr) and glial proteins (neurofascin-155, ankyrin B) form periodic quasi–one-dimensional arrangements, with a high degree of interdependence between the position of the axonal and the glial proteins. The results indicate the presence of mechanisms that finely align the cytoskeleton of the axon with the one of the Schwann cells, both at paranodal junctions (with myelin loops) and at nodal gaps (with microvilli). Taken together, our observations reveal the importance of the lateral organization of proteins at the nodes of Ranvier and pave the way for deeper investigations of the molecular ultrastructural mechanisms involved in action potential propagation, the formation of the nodes, axon–glia interactions, and demyelination diseases.


2014 ◽  
Vol 34 (29) ◽  
pp. 9768-9778 ◽  
Author(s):  
S.-J. Bull ◽  
J. M. Bin ◽  
E. Beaumont ◽  
A. Boutet ◽  
P. Krimpenfort ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document