light plane
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Vol 12 (2) ◽  
pp. 588
Author(s):  
Jun Wang ◽  
Xuexing Li

Single circular targets are widely used as calibration objects during line-structured light three-dimensional (3D) measurements because they are versatile and easy to manufacture. This paper proposes a new calibration method for line-structured light 3D measurements based on a single circular target. First, the target is placed in several positions and illuminated by a light beam emitted from a laser projector. A camera captures the resulting images and extracts an elliptic fitting profile of the target and the laser stripe. Second, an elliptical cone equation defined by the elliptic fitting profile and optical center of the camera is established based on the projective geometry. By combining the obtained elliptical cone and the known diameter of the circular target, two possible positions and orientations of the circular target are determined and two groups of 3D intersection points between the light plane and the circular target are identified. Finally, the correct group of 3D intersection points is filtered and the light plane is progressively fitted. The accuracy and effectiveness of the proposed method are verified both theoretically and experimentally. The obtained results indicate that a calibration accuracy of 0.05 mm can be achieved for an 80 mm × 80 mm planar target.


2021 ◽  
Vol 492 ◽  
pp. 126980
Author(s):  
Hai-hong Pan ◽  
Yao-wei Wang ◽  
Guo-wei Zhong ◽  
Ze Han ◽  
Lin Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chunfeng Li ◽  
Xiping Xu ◽  
Huiqi Sun ◽  
Jianwei Miao ◽  
Zhen Ren

A method is proposed to measure the coaxiality of stepped shafts based on line structured light vision. In order to solve the repeated positioning error of the measured shaft, the light plane equation solution method is proposed using movement distance and initial light plane equation. In the coaxiality measurement model, the equation of the reference axis is obtained by the overall least square method through the center point coordinates of each intercept line on the reference axis. The coaxiality error of each shaft segment relative to the reference axis is solved based on the principle of minimum containment. In the experiment, the coaxiality measurement method is evaluated, and the factors that affect the measurement accuracy are analyzed.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 187
Author(s):  
Qingchang Tan ◽  
Ying Kou ◽  
Jianwei Miao ◽  
Siyuan Liu ◽  
Bosen Chai

If the shaft diameter can be measured in-situ during the finishing process, the closed-loop control of the shaft diameter processing process can be realized and the machining accuracy can be improved. Present work studies the measurement of shaft diameter with the structured light system composed of a laser linear light source and a camera. The shaft is a kind of part with rotationally symmetric structure. When the linear structured light irradiates the surface of the shaft, a light stripe will be formed, and the light stripe is a part of the ellipse. Therefore, the in-situ measurement of the shaft diameter can be realized by the light stripe and the rotational symmetry of the shaft. The measurement model of shaft diameter is established by the ellipse formed by the intersection of the light plane and the measured shaft surface. Firstly, in the camera coordinate system, normal vector of the light plane and the coordinates of the ellipse center are obtained by the calibration; then, the equation of oblique elliptic cone is established by taking the ellipse as the bottom and the optical center of the camera as the top. Next, the measurement model of shaft diameter is obtained by the established oblique elliptic cone equation and theoretical image plane equation. Finally, the accuracy of the measurement model of shaft diameter is tested by the checkerboard calibration plate and a lathe. The test results show that the measurement model of shaft diameter is correct, and when the shaft diameter is 36.162mm, the speed is 1250r/min, the maximum average measurement error is 0.019mm. The measurement accuracy meets the engineering requirement.


2021 ◽  
Vol 58 (2) ◽  
pp. 0212001
Author(s):  
翟鹏 Zhai Peng ◽  
崔海华 Cui Haihua ◽  
胡广露 Hu Guanglu ◽  
张益华 Zhang Yihua ◽  
靳宇婷 Jin Yuting ◽  
...  

2021 ◽  
Vol 29 (1) ◽  
pp. 54-60
Author(s):  
Hai-hong PAN ◽  
◽  
Yao-wei WANG ◽  
Da-bin XU ◽  
Rui-liang LI ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 234-241
Author(s):  
Bin Liu ◽  
Qian Qiao ◽  
Fangfang Han

Background: The 3D laser scanner is a non-contact active-sensing system, which has a number of applications. Many patents have been filed on the technologies for calibrating 3D laser scanner. A precise calibration method is important for measuring the accuracy of the 3D laser scanner. The system model contains three categories of parameters to be calibrated which include the camera intrinsic parameters, distortion coefficients and the light plane parameters. Typically, the calibration process is completed in two steps. Based on Zhang’s method, the calibration of the camera intrinsic parameters and distortion coefficients can be performed. Then, 3D feature points on the light plane should precisely be formed and extracted. Finally, the points are used to calculate the light plane parameters. Methods: In this paper, a rapid calibration method is presented. Without any high precision auxiliary device, only one coplanar reference target is used. By using a group of captured images of the coplanar reference target placed in the field of view arbitrarily, calibration can be performed in one step. Based on the constraint from the planes formed by the target in different directions and the camera imaging model, a large amount of 3D points on the light plane can easily be obtained. The light plane equation in the camera coordinates system can be gathered by executing plane fitting to the 3D points. Results: During the experimental process, the developed 3D laser scanner was calibrated by the proposed method. Then, the measuring accuracy of the system was verified with known distance in vertical direction of 1mm with sequential shifting motion generated by precision translation stage. The average value of the measured distances was found to be 1.010mm. The standard deviation was 0.008mm. Conclusion: Experimental results prove that the proposed calibration method is simple and reliable.


2020 ◽  
Vol 47 (9) ◽  
pp. 0904004
Author(s):  
许丽 Xu Li ◽  
周永昊 Zhou Yonghao ◽  
张帆 Zhang Fan ◽  
罗文宇 Luo Wenyu ◽  
刘雪梅 Liu Xuemei

Sign in / Sign up

Export Citation Format

Share Document