scholarly journals Biological and Molecular Effects of Trypanosoma cruzi Residence in a LAMP-Deficient Intracellular Environment

Author(s):  
Anny Carolline Silva Oliveira ◽  
Luisa Rezende ◽  
Vladimir Gorshkov ◽  
Marcella Nunes Melo-Braga ◽  
Thiago Verano-Braga ◽  
...  

Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi’s gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes’ ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2−/−) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2−/−). On the other hand, TcY-L1/2−/− showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2−/−. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites’ ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2−/−, and TcY-L2−/− biological behavior.

2011 ◽  
Vol 208 (5) ◽  
pp. 909-921 ◽  
Author(s):  
Maria Cecilia Fernandes ◽  
Mauro Cortez ◽  
Andrew R. Flannery ◽  
Christina Tam ◽  
Renato A. Mortara ◽  
...  

Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca2+ transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca2+-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells.


1992 ◽  
Vol 175 (2) ◽  
pp. 567-575 ◽  
Author(s):  
S Schenkman ◽  
L Pontes de Carvalho ◽  
V Nussenzweig

Trans-sialidase and neuraminidase activities have been detected on the surface membrane of trypomastigotes of Trypanosoma cruzi, and both have been implicated in the parasite's invasion of host cells. We show here that these enzymes are structurally related. They are recognized by two independently derived monoclonal antibodies, are anchored to the membrane by glycosylphosphatidylinositol, copurify by ion exchange, molecular sieving, and hydrophobic chromatography, have maximal activities between pH 6.5 and 7.5, and are inactivated by heating at 56 degrees C. Furthermore, the neuraminidase and trans-sialidase reactions are coupled. An increase of the concentration of acceptors of the transfer reaction decreases the amount of free sialic acid released through the neuraminidase reaction. We conclude that a single enzyme can catalyze the transfer or the hydrolysis of macromolecular-bound sialic acid. The predominant direction of the reaction will depend on the availability of appropriate oligosaccharide acceptors of sialic acid.


2018 ◽  
Author(s):  
Victor Soares Cavalcante-Costa ◽  
Mariana Costa-Reginaldo ◽  
Thamires Queiroz-Oliveira ◽  
Anny Carolline Silva Oliveira ◽  
Natália Fernanda Couto ◽  
...  

ABSTRACTIntracellular parasites of the genus Leishmania are the causative agents of human leishmaniasis, a widespread emergent tropical disease. The parasite is transmitted by the bite of a hematophagous sandfly vector that inoculates motile flagellated promastigote forms into the dermis of the mammalian host. After inoculation, parasites are ultimately captured by macrophages and multiply as round-shaped amastigote forms. Macrophages seem not to be the first infected cells since parasites were observed invading neutrophils first whose leishmania-containing apoptotic bodies were latter captured by macrophages, thereby becoming infected. The fact that Leishmania spp are able to live and replicate inside immune phagocytic cells and that macrophages are the main cell type found infected in chronicity created the perception that Leishmania spp are passive players waiting to be captured by phagocytes. However, several groups have described the infection of non-phagocytic cells in vivo and in vitro. The objective of this work was to study the cellular mechanisms involved in the invasion of non-professional phagocytes by Leishmania. We show that promastigotes of L.amazonensis actively induces invasion in fibroblasts without cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Inside fibroblasts parasites transformed in amastigotes, remained viable for at least two weeks and re-transformed in promastigotes when returned to insect vector conditions. Similarly to what was observed for T. cruzi, infection involves calcium signaling, recruitment and exocytosis of lysosomes involved in plasma membrane repair and lysosome-triggered endocytosis. Conditions that alter lysosomal function such as cytochalasin-D and brefeldin-A treatment or the knockout of host cell lysosomal proteins LAMP-1 and 2 dramatically affected invasion. Likewise, triggering of lysosomal exocytosis and lysosome-dependent plasma membrane repair by low doses of streptolysin-O dramatically increased parasite entry. Together our results show that L.amazonensis promastigotes are able to take advantage of calcium-dependent lysosomal exocytosis and lysosome-induced endocytosis to invade and persist in non-phagocytic cells.AUTHOR SUMMARYIntracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting but overlooked finding on Leishmania infection is that non-phagocytic cells have also been found infected by amastigotes. Nevertheless, the mechanisms by which Leishmania invades non-phagocytic cells were not studied to date. Here we show that L. amazonensis can actively induce their own entry into fibroblasts independently of actin cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions such as calcium signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair and whose positioning and content interfere in invasion. Parasites were able to replicate and remained viable in fibroblasts, suggesting that cell invasion trough the mechanism demonstrated here could serve as a parasite hideout and reservoir, facilitating infection amplification and persistence.


2020 ◽  
Vol 26 ◽  
Author(s):  
Aline Araujo Zuma ◽  
Emile dos Santos Barrias ◽  
Wanderley de Souza

Abstract:: The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information with Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; the glycosome and its role in the metabolism of the cell; the acidocalcisome, describing its morphology, biochemistry, and functional role; the cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Harshini Weerasinghe ◽  
Hayley E. Bugeja ◽  
Alex Andrianopoulos

AbstractMicrobial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.


2001 ◽  
Vol 281 (2) ◽  
pp. 300-304 ◽  
Author(s):  
Mariana Bollo ◽  
Graciela Venera ◽  
Mirtha Biscoglio de Jiménez Bonino ◽  
Estela Machado-Domenech

2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2017 ◽  
Vol 372 (1726) ◽  
pp. 20160222 ◽  
Author(s):  
Suzanne E. Osborne ◽  
John H. Brumell

Listeria monocytogenes ( Lm ) is a Gram-positive facultative intracellular pathogen. Infections in humans can lead to listeriosis, a systemic disease with a high mortality rate. One important mechanism of Lm dissemination involves cell-to-cell spread after bacteria have entered the cytosol of host cells. Listeriolysin O (LLO; encoded by the hly gene) is a virulence factor present in Lm that plays a central role in the cell-to-cell spread process. LLO is a member of the cholesterol-dependent cytolysin (CDC) family of toxins that were initially thought to promote disease largely by inducing cell death and tissue destruction—essentially acting like a ‘bazooka’. This view was supported by structural studies showing CDCs can form large pores in membranes. However, it is now appreciated that LLO has many subtle activities during Lm infection of host cells, and many of these likely do not involve large pores, but rather small membrane perforations. It is also appreciated that membrane repair pathways of host cells play a major role in limiting membrane damage by LLO and other toxins. LLO is now thought to represent a ‘Swiss army knife’, a versatile tool that allows Lm to induce many membrane alterations and cellular responses that promote bacterial dissemination during infection. This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.


Sign in / Sign up

Export Citation Format

Share Document