scholarly journals Initial Stress and Gravity on P-Wave Reflection from Electromagneto-Thermo-Microstretch Medium in the Context of Three-Phase Lag Model

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
F. S. Bayones ◽  
S. M. Abo-Dahab ◽  
A. M. Abd-Alla ◽  
S. H. Elhag ◽  
A. A. Kilany ◽  
...  

The present paper studied the reflection of thermo-microstretch waves under the generalized thermoelasticity theory which is employed to study the reflection of plane harmonic waves from a semi-infinite elastic solid under the effect of the electromagnetic field, initial stress, and gravity. The formulation is applied under the thermoelasticity theory with three-phase lag, and the reflection coefficient ratio variations with the angle of incidence under different conditions are obtained. Numerical results obtained from the present study are presented graphically and discussed. It is observed that the initial stress, gravitation, and electromagnetic field exert some influence in the thermo-microstretch medium due to reflection of P-waves.

Author(s):  
S.M. Abo-Dahab ◽  
A. Abd-Alla ◽  
araby kilany

A unified mathematical model of three-phase-lag in a compressed rotating isotropic homogeneous micropolar thermo-viscoelastic medium based on a ramp type thermal shock is developed. An application of this model is carried out to resolve the problem of a perfectly conducting half-space subjected to certain boundary conditions in the presence of an electromagnetic field. Lame’s potentials and normal mode analysis techniques are employed to get the general analytical solutions. Specific attention is paid to explore the impact of the rotation, magnetic field, ramp time, as well as initial stress on the distributions of temperature, displacement, stress, and induced electric and magnetic distribution. The findings show that the impact of the rotation, magnetic field, viscous, ramp parameter, initial stress, and phase-lag on the micropolar thermo-viscoelastic medium is noticeable.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 285-299
Author(s):  
Jamel Bouslimi ◽  
Sayed Abo-Dahab ◽  
Khaled Lotfy ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
...  

In this paper is investigating the theory of generalized thermoelasticity under two temperature is used to solve boundary value problems of 2-D half-space its bound?ary with different types of heating under gravity effect. The governing equations are solved using new mathematical methods under the context of Lord-Shulman, Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves?tigate the surface waves in an isotropic elastic medium subjected to gravity field, magnetic field, and initial stress. The general solution obtained is applied to a spe?cific problem of a half-space and the interaction with each other under the influence of gravity. The physical domain by using the harmonic vibrations is used to obtain the exact expressions for the Waves velocity and attenuation coefficients for Stoneley waves, Love waves, and Rayleigh waves. Comparisons are made with the results between the three theories. Numerical work is also performed for a suitable material with the aim of illustrating the results. The results obtained are calculated numerical?ly and presented graphically with some comparisons in the absence and the presence the influence of gravity, initial stress and magnetic field. It clears that the results ob?tained agree with the physical practical results and agree with the previous results if the gravity, two temperature, and initial stress neglect as special case from this study.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 285-299
Author(s):  
Jamel Bouslimi ◽  
Sayed Abo-Dahab ◽  
Khaled Lotfy ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
...  

In this paper is investigating the theory of generalized thermoelasticity under two temperature is used to solve boundary value problems of 2-D half-space its bound?ary with different types of heating under gravity effect. The governing equations are solved using new mathematical methods under the context of Lord-Shulman, Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves?tigate the surface waves in an isotropic elastic medium subjected to gravity field, magnetic field, and initial stress. The general solution obtained is applied to a spe?cific problem of a half-space and the interaction with each other under the influence of gravity. The physical domain by using the harmonic vibrations is used to obtain the exact expressions for the Waves velocity and attenuation coefficients for Stoneley waves, Love waves, and Rayleigh waves. Comparisons are made with the results between the three theories. Numerical work is also performed for a suitable material with the aim of illustrating the results. The results obtained are calculated numerical?ly and presented graphically with some comparisons in the absence and the presence the influence of gravity, initial stress and magnetic field. It clears that the results ob?tained agree with the physical practical results and agree with the previous results if the gravity, two temperature, and initial stress neglect as special case from this study.


2020 ◽  
Vol 22 (1) ◽  
pp. 313-328 ◽  
Author(s):  
S. M. Abo-Dahab ◽  
S. Z. Rida ◽  
R. A. Mohamed ◽  
A. A. Kilany

AbstractThe present paper is devoted to investigate the influence of the rotation, thermal field, initial stress, gravity field, electromagnetic and voids on the reflection of P wave under three models of generalized thermoelasticity: Classical and Dynamical coupled model (CD), Lord-Shulman model (LS), Green-Lindsay model (GL), The boundary conditions at stress-free thermally insulated surface are satisfied to obtain Algebraic system of four equations in the reflection coefficients of various reflected waves. It is shown that there exist four plane waves; P1, P2, P3 and P4. In addition, the reflection coefficients from insulated and isothermal stress-free surface for the incident P wave are obtained. Finally, numerical values of the complex modulus of the reflection coefficients are visualized graphically to display the effects of the rotation, initial stress, gravity field magnetic field, thermal relaxation times and voids parameters.


Author(s):  
Hongbo Qiu ◽  
Wenfei Yu ◽  
Shuai Yuan ◽  
Bingxia Tang ◽  
Cunxiang Yang

Purpose The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study on the electromagnetic field of permanent magnet synchronous motors (PMSM). The purpose of this study is to explore the necessary of the LC existing in the fault analysis and the electromagnetic characteristics of the PMSM with the ITSC fault when taking into account the LC. Design/methodology/approach Based on the finite element method (FEM), the fault model was established, and the magnetic density of the fault condition was analyzed. The induced electromotive force (EMF) and the LC of the short circuit ring were studied. The three-phase induced EMF and the unbalance of the three-phase current under the fault condition were studied. Finally, a prototype test platform was built to obtain the data of the fault. Findings The influence of the fault on the magnetic density was obtained. The current phase lag when the ITSC fault occurs causes the magnetic enhancement of the armature reaction. The mechanism that LC hinders the flux change was revealed. The influence of the fault on the three-phase-induced EMF symmetry, the three-phase current balance and the loss was obtained. Originality/value The value of the LC in the short circuit ring and the influence of it on the motor electromagnetic field were obtained. On the basis of the electromagnetic field calculation model, the sensitivity of the LC to the magnetic density, induced EMF, current and loss were analyzed.


The diffraction of time-harmonic stress waves by a penny-shaped crack in an infinite elastic solid is an important problem in fracture mechanics and in the theory of the ultrasonic inspection of materials. Martin ( Proc. R. Soc. Lond . A 378, 263 (1981)) has proved that the corresponding linear boundary-value problem has precisely one solution, and that this solution can be constructed by solving a two-dimensional Fredholm integral equation of the second kind. However, this integral equation has a complicated matrix kernel and the components of its vector solution are coupled. The main purpose of the present paper is to show how Martin’s integral equation can be explicitly solved in terms of a sequence of functions, each of which satisfies a very simple scalar integral equation of the second kind; this simplification may be made for any incident wave. For an incident plane wave, further simplifications are possible. We show that the solution at an arbitrary angle of incidence can be derived from the solution at a particular angle of incidence, namely grazing incidence. The resulting computational procedure is especially attractive if only the stress-intensity factors or the far-held displacements are required. Finally, we present some numerical results for the scattering of a P-wave at normal incidence and an SV-wave at oblique incidence, and compare these with those of other authors.


2014 ◽  
Vol 6 (06) ◽  
pp. 783-796 ◽  
Author(s):  
Ahmed E. Abouelregal ◽  
Ashraf M. Zenkour

AbstractIn this paper, the generalized thermoelasticity problem for an infinite fiber-reinforced transversely-isotropic thick plate subjected to initial stress is solved. The lower surface of the plate rests on a rigid foundation and temperature while the upper surface is thermally insulated with prescribed surface loading. The normal mode analysis is used to obtain the analytical expressions for the displacements, stresses and temperature distributions. The problem has been solved analytically using the generalized thermoelasticity theory of dual-phase-lags. Effect of phase-lags, reinforcement and initial stress on the field quantities is shown graphically. The results due to the coupled thermoelasticity theory, Lord and Shulman’s theory, and Green and Naghdi’s theory have been derived as limiting cases. The graphs illustrated that the initial stress, the reinforcement and phase-lags have great effects on the distributions of the field quantities.


Sign in / Sign up

Export Citation Format

Share Document