Predicting variations of the least principal stress with depth: Application to unconventional oil and gas reservoirs using a log-based viscoelastic stress relaxation model

Geophysics ◽  
2022 ◽  
pp. 1-56
Author(s):  
Ankush Singh ◽  
Mark D. Zoback

Knowledge of layer-to-layer variations of the least principal stress, S hmin, with depth is essential for optimization of multi-stage hydraulic fracturing in unconventional reservoirs. Utilizing a geomechanical model based on viscoelastic stress relaxation in relatively clay rich rocks, we present a new method for predicting continuous S hmin variations with depth. The method utilizes geophysical log data and S hmin measurements from routine diagnostic fracture injection tests (DFITs) at several depths for calibration. We consider a case study in the Wolfcamp formation in the Midland Basin, where both geophysical logs and values of S hmin from DFITs are available. We compute a continuous stress profile as a function of the well logs that fits all of the DFITs well. We utilized several machine learning technologies, such as bootstrap aggregation (or bagging), to improve the generalization of the model and demonstrate that the excellent fit between predicted and observed stress values is not the result of over-fitting the calibration points. The model is then validated by accurately predicting hold-out stress measurements from four wells within the study area and, without recalibration, accurately predicting stress as a function of depth in an offset pad about 6 miles away.

2021 ◽  
pp. 1-34
Author(s):  
Kevin L. McCormack ◽  
Mark D. Zoback ◽  
Wenhuan Kuang

We carried out a geomechanical study of three wells, one each in the Niobrara A, Niobrara C and Codell sandstone to investigate how the state of stress and stress variations with depth affect vertical hydraulic fracture growth and shear stimulation of pre-existing fractures. We demonstrate that the higher magnitudes of measured least principal stress values in the Niobrara A and C shales are the result of viscoplastic stress relaxation. Using a density log and a VTI velocity model developed to accurately locate the microseismic events, we theoretically calculated a continuous profile of the magnitude of the least principal stress with depth. This stress profile explains the apparent vertical hydraulic fracture growth as inferred from the well-constrained depths of associated microseismic events. Finally, we demonstrate that because of the upward propagation of hydraulic fractures from the Niobrara C to the Niobrara A, the latter formation experienced considerably more shear stimulation, which may contribute to the greater production of oil and gas from that formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manzar Fawad ◽  
Nazmul Haque Mondol

AbstractGeological CO2 storage can be employed to reduce greenhouse gas emissions to the atmosphere. Depleted oil and gas reservoirs, deep saline aquifers, and coal beds are considered to be viable subsurface CO2 storage options. Remote monitoring is essential for observing CO2 plume migration and potential leak detection during and after injection. Leak detection is probably the main risk, though overall monitoring for the plume boundaries and verification of stored volumes are also necessary. There are many effective remote CO2 monitoring techniques with various benefits and limitations. We suggest a new approach using a combination of repeated seismic and electromagnetic surveys to delineate CO2 plume and estimate the gas saturation in a saline reservoir during the lifetime of a storage site. This study deals with the CO2 plume delineation and saturation estimation using a combination of seismic and electromagnetic or controlled-source electromagnetic (EM/CSEM) synthetic data. We assumed two scenarios over a period of 40 years; Case 1 was modeled assuming both seismic and EM repeated surveys were acquired, whereas, in Case 2, repeated EM surveys were taken with only before injection (baseline) 3D seismic data available. Our results show that monitoring the CO2 plume in terms of extent and saturation is possible both by (i) using a repeated seismic and electromagnetic, and (ii) using a baseline seismic in combination with repeated electromagnetic data. Due to the nature of the seismic and EM techniques, spatial coverage from the reservoir's base to the surface makes it possible to detect the CO2 plume’s lateral and vertical migration. However, the CSEM low resolution and depth uncertainties are some limitations that need consideration. These results also have implications for monitoring oil production—especially with water flooding, hydrocarbon exploration, and freshwater aquifer identification.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


Author(s):  
Anatoly M. NIKASHKIN ◽  
Alexey A. KLIMOV

One of the primary and significant tasks in the construction of geological models of oil and gas reservoirs and development facilities is the problem of correlation of productive layers. This task, as a rule, is reduced to the identification and areal tracing of presumably even-aged oil and gas strata, horizons, and layers characterized by clear boundaries between sand strata and clay layers overlapping them. The practice of work related to modeling the structure of oil and gas horizons, layers and strata indicates that the correlation is not always unambiguous. The ambiguity is especially noticeable when correlating strata characterized by a clinoform structure, one of the examples is the Achimov strata. The most reliable basis for well correlation is GIS materials and lithological features of the interlayers forming individual layers. Clay interlayers and clay strata separating productive deposits provide valuable information when choosing a correlation model in sedimentary sections. These interlayers are characterized by the greatest consistency in area and are most clearly displayed on geophysical diagrams by the nature of the drawings of GIS curves. However, even in this case, i. e. when using the entire accumulated volume of the most diverse lithological and field-geophysical information, the correlation models of the sections turn out to be different and often even opposite. In this paper, the authors had to face a similar situation when correlating the horizon AS11 of the Zapadno-Kamynskoye field. The paper describes a method for clarifying the position of the chops of the productive horizon of oil and gas deposits using a multidimensional deterministic-statistical numerical model of the correlation of sedimentary strata. The proposed approach allows us to uniquely determine the positions of the chops in the conditions of a complex geological structure of the object, high thin-layered heterogeneity. A concrete example shows the advantages of the proposed approach in comparison with the traditional one.


Author(s):  
Baozhi Pan ◽  
◽  
Weiyi Zhou ◽  
Yuhang Guo ◽  
Zhaowei Si ◽  
...  

A saturation evaluation model suitable for Nanpu volcanic rock formation is established based on the experiment of acoustic velocity changing with saturation during the water drainage process of volcanic rock in the Nanpu area. The experimental data show that in the early stage of water drainage, the fluid distribution in the pores of rock samples satisfies the patchy formula. With the decrease of the sample saturation, the fluid distribution in the pores is more similar to the uniform fluid distribution model. In this paper, combined with the Gassmann-Brie and patchy formula, the calculation equation of Gassmann-Brie-Patchy (G-B-P) saturation is established, and the effect of contact softening is considered. The model can be used to calculate water saturation based on acoustic velocity, which provides a new idea for the quantitative evaluation of volcanic oil and gas reservoirs using seismic and acoustic logging data.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 510 ◽  
Author(s):  
Valery Vernikovsky ◽  
Georgy Shemin ◽  
Evgeny Deev ◽  
Dmitry Metelkin ◽  
Nikolay Matushkin ◽  
...  

The geodynamic development of the north–western (Arctic) margin of the Siberian craton is comprehensively analyzed for the first time based on our database as well as on the analysis of published material, from Precambrian-Paleozoic and Mesozoic folded structures to the formation of the Mesozoic-Cenozoic Yenisei-Khatanga sedimentary basin. We identify the main stages of the region’s tectonic evolution related to collision and accretion processes, mainly subduction and rifting. It is demonstrated that the prototype of the Yenisei-Khatanga basin was a wide late Paleozoic foreland basin that extended from Southern Taimyr to the Tunguska syneclise and deepened towards Taimyr. The formation of the Yenisei-Khatanga basin, as well as of the West-Siberian basin, was due to continental rifting in the Permian-Triassic. The study describes the main oil and gas generating deposits of the basin, which are mainly Jurassic and Lower Cretaceous mudstones. It is shown that the Lower Cretaceous deposits contain 90% of known hydrocarbon reserves. These are mostly stacked reservoirs with gas, gas condensate and condensate with rims. The study also presents data on oil and gas reservoirs, plays and seals in the Triassic, Jurassic and Cretaceous complexes.


Sign in / Sign up

Export Citation Format

Share Document