target exposure
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Meyer ◽  
S Schneckener ◽  
R Loosen ◽  
K Coboeken ◽  
S Willmann ◽  
...  

Abstract Background/Introduction Vericiguat is a soluble guanylate cyclase (sGC) stimulator, like riociguat and nelociguat, and entered clinical development in 2012. Before entering Phase 2, pharmacokinetics (PK) and pharmacodynamics (PD) of vericiguat had been studied in healthy volunteers only, whereas riociguat and nelociguat had also been studied in patients with pulmonary hypertension (PH) and left ventricular dysfunction (LVD) or biventricular chronic heart failure (HF). We hypothesised that integrating all PK/PD data from these compounds into population PK/PD (popPK/PD) and physiology-based PK (PBPK) models could be used to predict optimal and safe dose ranges of vericiguat for Phase 2b studies in patients with worsening chronic HF. This novel bridging approach was applied in one of several translational stages to accelerate the development of vericiguat (Figure 1). Purpose We used prior knowledge from other sGC stimulators in a combined PK/PD and PBPK modelling approach to directly initiate Phase 2b studies of vericiguat in patients after Phase 1 studies in healthy volunteers. Methods PK, heart rate (HR) and systemic vascular resistance (SVR) data for vericiguat, nelociguat and riociguat were used to calculate PK/PD slopes of linear models, corrected with fraction unbound percentages (2.2%, 3.6% and 3.9%, respectively), to compare potency relative to riociguat based on unbound concentrations. PK estimates for nelociguat and riociguat were derived using population PK modelling (NONMEM) from patient studies with sparse PK sampling. PBPK models informed by preclinical physicochemical and PK data as well as clinical data for vericiguat were used to predict vericiguat PK in patients with HF (PK-Sim). Exposure–response data for riociguat in patients indicated the optimal range of PD responses for vericiguat (blood pressure for safety and cardiac index for efficacy). Results Vericiguat and nelociguat had lower potency than riociguat when comparing PK/PD slopes for HR and SVR (slope ratios of 0.23–0.32 for vericiguat and 0.33–0.47 for nelociguat). Plasma concentrations of vericiguat would need to be ∼3.6 times that of riociguat for equivalent responses. In patients with PH and LVD the optimal plasma concentration range for riociguat was ∼10–100 μg/l in exposure–response and safety studies, which translates to a target exposure range of ∼90–900 μg/l for vericiguat in patients with HF. PBPK modelling showed that vericiguat 2.5 mg and 10 mg would cover the target exposure range and that 1.25 mg would be a “non-effective” dose level with respect to haemodynamics. Conclusions Our novel translational approach combining popPK/PD analyses of other sGC stimulators with PBPK modelling enabled vericiguat to move directly from Phase 1 to Phase 2b, reducing development time by ∼2 years. PK and safety results from Phase 2b (SOCRATES-REDUCED) and Phase 3 (VICTORIA) trials confirmed that use of this translational approach to predict dose ranges of vericiguat was successful. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): Funding for this research was provided by Bayer AG, Berlin, Germany Figure 1


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles N. Zawatsky ◽  
Joshua K. Park ◽  
Jasmina Abdalla ◽  
George Kunos ◽  
Malliga R. Iyer ◽  
...  

Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1299
Author(s):  
Federico Romano ◽  
Salvatore D’Agate ◽  
Oscar Della Pasqua

Repurposing of remdesivir and other drugs with potential antiviral activity has been the basis of numerous clinical trials aimed at SARS-CoV-2 infection in adults. However, expeditiously designed trials without careful consideration of dose rationale have often resulted in treatment failure and toxicity in the target patient population, which includes not only adults but also children. Here we show how paediatric regimens can be identified using pharmacokinetic-pharmacodynamic (PKPD) principles to establish the target exposure and evaluate the implications of dose selection for early and late intervention. Using in vitro data describing the antiviral activity and published pharmacokinetic data for the agents of interest, we apply a model-based approach to assess the exposure range required for adequate viral clearance and eradication. Pharmacokinetic parameter estimates were subsequently used with clinical trial simulations to characterise the probability target attainment (PTA) associated with enhanced antiviral activity in the lungs. Our analysis shows that neither remdesivir, nor anti-malarial drugs can achieve the desirable target exposure range based on a mg/kg dosing regimen, due to a limited safety margin and high concentrations needed to ensure the required PTA. To date, there has been limited focus on suitable interventions for children affected by COVID-19. Most clinical trials have defined doses selection criteria empirically, without thorough evaluation of the PTA. The current results illustrate how model-based approaches can be used for the integration of clinical and nonclinical data, providing a robust framework for assessing the probability of pharmacological success and consequently the dose rationale for antiviral drugs for the treatment of SARS-CoV-2 infection in children.


2021 ◽  
Author(s):  
Michelangelo Traina ◽  
Alexis Aguilar-Arevalo ◽  
Dante Amidei ◽  
Isaac Arnquist ◽  
Daniel Baxter ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 494
Author(s):  
Florent Ferrer ◽  
Jonathan Chauvin ◽  
Bénédicte DeVictor ◽  
Bruno Lacarelle ◽  
Jean-Laurent Deville ◽  
...  

Different target exposures with sunitinib have been proposed in metastatic renal cell carcinoma (mRCC) patients, such as trough concentrations or AUCs. However, most of the time, rather than therapeutic drug monitoring (TDM), clinical evidence is preferred to tailor dosing, i.e., by reducing the dose when treatment-related toxicities show, or increasing dosing if no signs of efficacy are observed. Here, we compared such empirical dose adjustment of sunitinib in mRCC patients, with the parallel dosing proposals of a PK/PD model with TDM support. In 31 evaluable patients treated with sunitinib, 53.8% had an empirical change in dosing after treatment started (i.e., 46.2% decrease in dosing, 7.6% increase in dosing). Clinical benefit was observed in 54.1% patients, including 8.3% with complete response. Overall, 58.1% of patients experienced treatment discontinuation eventually, either because of toxicities or progressive disease. When choosing 50–100 ng/mL trough concentrations as a target exposure (i.e., sunitinib + active metabolite N-desethyl sunitinib), 45% patients were adequately exposed. When considering 1200–2150 ng/mL.h as a target AUC (i.e., sunitinib + active metabolite N-desethyl sunitinib), only 26% patients were in the desired therapeutic window. TDM with retrospective PK/PD modeling would have suggested decreasing sunitinib dosing in a much larger number of patients as compared with empirical dose adjustment. Indeed, when using target trough concentrations, the model proposed reducing dosing for 61% patients, and up to 84% patients based upon target AUC. Conversely, the model proposed increasing dosing in 9.7% of patients when using target trough concentrations and in 6.5% patients when using target AUC. Overall, TDM with adaptive dosing would have led to tailoring sunitinib dosing in a larger number of patients (i.e., 53.8% vs. 71–91%, depending on the chosen metrics for target exposure) than a clinical-based decision. Interestingly, sunitinib dosing was empirically reduced in 41% patients who displayed early-onset severe toxicities, whereas model-based recommendations would have immediately proposed to reduce dosing in more than 80% of those patients. This observation suggests that early treatment-related toxicities could have been partly avoided using prospective PK/PD modeling with adaptive dosing. Conversely, the possible impact of model-based adapted dosing on efficacy could not be fully evaluated because no clear relationship was found between baseline exposure levels and sunitinib efficacy measured at 3 months.


2021 ◽  
pp. archdischild-2020-321381
Author(s):  
Samira Samiee-Zafarghandy ◽  
Tamara van Donge ◽  
Gerhard Fusch ◽  
Marc Pfister ◽  
George Jacob ◽  
...  

ObjectiveExploration of a novel therapeutic drug monitoring (TDM) strategy to personalise use of ibuprofen for closure of patent ductus arteriosus (PDA) in preterm neonates.DesignProspective, single-centre, open-label, pharmacokinetics study in preterm neonates.SettingNeonatal intensive care unit at McMaster Children’s Hospital.PatientsNeonates with a gestational age ≤28+6 weeks treated with oral ibuprofen for closure of a PDA.MethodsPopulation pharmacokinetic parameters, concentration-time profiles and exposure metrics were obtained using pharmacometric modelling and simulation.Main outcome measureAssociation between ibuprofen plasma concentrations measured at various sampling time points on the first day of treatment and attainment of the target exposure over the first 3 days of treatment (AUC0–72h >900 mg·hour/L).ResultsTwenty-three preterm neonates (median birth weight 780 g and gestational age 25.9 weeks) were included, yielding 155 plasma ibuprofen plasma samples. Starting from 8 hours’ postdose on the first day, a strong correlation between ibuprofen concentrations and AUC0–72h was observed. At 8 hours after the first dose, an ibuprofen concentration >20.5 mg/L was associated with a 90% probability of reaching the target exposure.ConclusionWe designed a novel and practical TDM strategy and have shown that the chance of reaching the target exposure (AUC0–72h >900 mg·hour/L) can be predicted with a single sample collection on the first day of treatment. This newly acquired knowledge can be leveraged to personalise ibuprofen dosing regimens and improve the efficacy of ibuprofen use for pharmacological closure of a PDA.


Radiography ◽  
2021 ◽  
Author(s):  
J. Guðjónsdóttir ◽  
K.E. Paalsson ◽  
G.P. Sveinsdóttir

2020 ◽  
Vol 125 (24) ◽  
Author(s):  
A. Aguilar-Arevalo ◽  
D. Amidei ◽  
D. Baxter ◽  
G. Cancelo ◽  
B. A. Cervantes Vergara ◽  
...  

2020 ◽  
Vol 109 (1) ◽  
pp. 212-221
Author(s):  
Sophie L. Stocker ◽  
Jane E. Carland ◽  
Stephanie E. Reuter ◽  
Alexandra E. Stacy ◽  
Andrea L. Schaffer ◽  
...  

2020 ◽  
Vol 47 (9) ◽  
pp. 1424-1430 ◽  
Author(s):  
Stephen J. Balevic ◽  
Christoph P. Hornik ◽  
Thomas P. Green ◽  
Megan E.B. Clowse ◽  
Daniel Gonzalez ◽  
...  

Objective.To characterize hydroxychloroquine (HCQ) exposure in patients with rheumatic disease receiving longterm HCQ compared to target concentrations with reported antiviral activity against the coronavirus disease 2019 caused by SARS-CoV-2 (COVID-19).Method.We evaluated total HCQ concentrations in serum and plasma from published literature values, frozen serum samples from a pediatric systemic lupus erythematosus trial, and simulated concentrations using a published pharmacokinetic model during pregnancy. For each source, we compared observed or predicted HCQ concentrations to target concentrations with reported antiviral activity against SARS-CoV-2.Results.The average total serum/plasma HCQ concentrations were below the lowest SARS-CoV-2 target of 0.48 mg/l in all studies. Assuming the highest antiviral target exposure (total plasma concentration of 4.1 mg/l), all studies had about one-tenth the necessary concentration for in vitro viral inhibition. Pharmacokinetic model simulations confirmed that pregnant adults receiving common dosing for rheumatic diseases did not achieve target exposures; however, the models predict that a dosage of 600 mg once a day during pregnancy would obtain the lowest median target exposure for most patients after the first dose.Conclusion.We found that the average patient receiving treatment with HCQ for rheumatic diseases, including children and non-pregnant/pregnant adults, are unlikely to achieve total serum or plasma concentrations shown to inhibit SARS-CoV-2 in vitro. Nevertheless, patients receiving HCQ long term may have tissue concentrations far exceeding that of serum/plasma. Because the therapeutic window for HCQ in the setting of SARS-CoV-2 is unknown, well-designed clinical trials that include patients with rheumatic disease are urgently needed to characterize the efficacy, safety, and target exposures for HCQ.


Sign in / Sign up

Export Citation Format

Share Document