superfluid fraction
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 11 (11) ◽  
pp. 4931
Author(s):  
Phong H. Nguyen ◽  
Massimo Boninsegni

We present results of large-scale Monte Carlo simulations of the 2D classical x-y model on the square lattice. We obtain high accuracy results for the superfluid fraction and for the specific heat as a function of temperature, for systems of size L×L with L up to 212. Our estimate for the superfluid transition temperature is consistent with those furnished in all previous studies. The specific heat displays a well-defined peak, whose shape and position are independent of the size of the lattice for L>28, within the statistical uncertainties of our calculations. The implications of these results on the interpretation of experiments on adsorbed thin films of 4He are discussed.



Science ◽  
2021 ◽  
pp. eaba4309
Author(s):  
L. Tanzi ◽  
J. G. Maloberti ◽  
G. Biagioni ◽  
A. Fioretti ◽  
C. Gabbanini ◽  
...  

A key manifestation of superfluidity in liquids and gases is a reduction of the moment of inertia under slow rotations. Non-classical rotational effects have also been considered in the context of the elusive supersolid phase of matter, in which superfluidity coexists with a lattice structure. Here we show that the recently discovered supersolid phase in dipolar quantum gases features a reduced moment of inertia. Using a dipolar gas of dysprosium atoms, we study a peculiar rotational oscillation mode in a harmonic potential, the scissors mode, previously investigated in ordinary superfluids. From the measured moment of inertia, we deduce a superfluid fraction that is different from zero and of order of unity, providing direct evidence of the superfluid nature of the dipolar supersolid.



2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Thomas M. Holden

The early advances in neutron scattering at the Chalk River Laboratories of Atomic Energy of Canada are recorded. From initial nuclear physics measurements at the National Research Experimental (NRX) reactor came the realization that, with the flux available and improvements in monochromator technology, direct measurements of the normal modes of vibrations of solids and the structure and dynamics of liquids would be feasible. With further flux increases at the National Research Universal (NRU) reactor, the development of the triple-axis crystal spectrometer, and the invention of the constant-Q technique, the fields of lattice dynamics and magnetism and their interpretation in terms of the long-range forces between atoms and exchange interactions between spins took a major step forward. Experiments were performed over a seven-year period on simple metals such as potassium, complex metals such as lead, transition metals, semiconductors, and alkali halides. These were analyzed in terms of the atomic forces and demonstrated the long-range nature of the forces. The first measurements of spin wave excitations, in magnetite and in the 3D metal alloy CoFe, also came in this period. The first numerical estimates of the superfluid fraction of liquid helium II came from extensive measurements of the phonon–roton and multiphonon parts of the inelastic scattering. After the first two decades, neutron experiments continued at Chalk River until the shut-down of the NRU reactor in 2018 and the disbanding of the neutron effort in 2019, seventy years after the first experiments.



2020 ◽  
Vol 384 (25) ◽  
pp. 126476
Author(s):  
Ahmed S. Hassan ◽  
Azza M. El-Badry ◽  
M.R.M. Elsharkawya ◽  
Adel M. Mohammedein ◽  
A.M. Abdallah


2020 ◽  
Vol 639 ◽  
pp. A90
Author(s):  
S. T. H. Hartman ◽  
H. A. Winther ◽  
D. F. Mota

Aims. We intend to understand cosmological structure formation within the framework of superfluid models of dark matter with finite temperatures. Of particular interest is the evolution of small-scale structures where the pressure and superfluid properties of the dark matter fluid are prominent. We compare the growth of structures in these models with the standard cold dark matter paradigm and non-superfluid dark matter. Methods. The equations for superfluid hydrodynamics were computed numerically in an expanding ΛCDM background with spherical symmetry; the effect of various superfluid fractions, temperatures, interactions, and masses on the collapse of structures was taken into consideration. We derived the linear perturbation of the superfluid equations, giving further insights into the dynamics of the superfluid collapse. Results. We found that while a conventional dark matter fluid with self-interactions and finite temperatures experiences a suppression in the growth of structures on smaller scales, as expected due to the presence of pressure terms, a superfluid can collapse much more efficiently than was naively expected due to its ability to suppress the growth of entropy perturbations and thus gradients in the thermal pressure. We also found that the cores of the dark matter halos initially become more superfluid during the collapse, but eventually reach a point where the superfluid fraction falls sharply. The formation of superfluid dark matter halos surrounded by a normal fluid dark matter background is therefore disfavored by the present work.





Quantum 20/20 ◽  
2019 ◽  
pp. 243-260
Author(s):  
Ian R. Kenyon

The superfluid transition of 4He at 2.17K to He-II and the inference of an underlying condensate are introduced. The fountain effect is interpreted. Andronikashvili’s experiment and the determination of superfluid fraction versus temperature are discussed. Sound and second sound are described. Relationships between the condensate and superfluid fractions, and to off diagonal long-range order (ODLRO) are deduced. The revelation of topological quantization of circulation by Vinen’s experiment is recounted. Spontaneous symmetry breaking by the condensate’s phase coherence is explained. Excitations and their dispersion relations described with Landau’s interpretation, including the explanation of the critical velocity of superflow. Vortices, their interpretation in terms of quantized circulation, and their visualization are described.





Sign in / Sign up

Export Citation Format

Share Document