coral fauna
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)

Zootaxa ◽  
2021 ◽  
Vol 4960 (1) ◽  
pp. 1-199
Author(s):  
ROSEMARIE CHRISTINE BARON-SZABO

From the Schrattenkalk Formation (upper Barremian–lower Aptian) of southern Germany, western Austria, and Switzerland, new coral material is taxonomically described, belonging to 56 species from 35 genera of 21 families: Actinastrea pseudominima (Koby); A. subornata (d’Orbigny); Paretallonia bendukidzeae Sikharulidze; Eugyra (Felixigyra) crassa (de Fromentel) (new combination); E. (F.) patruliusi (Morycowa); E. (F.) picteti (Koby) (new combination); E. rariseptata Morycowa; Myriophyllia propria Sikharulidze; Thecosmilia dichotoma Koby; Clausastrea plana (de Fromentel); Complexastrea cf. lobata Geyer; Paraclausastrea chevalieri Zlatarski; P. kaufmanni (Koby); P. vorarlbergensis Baron-Szabo; ?Montlivaltia sp.; Diplogyra subplanotabulata Sikharulidze; Hydnophora styriaca (Michelin); Dermosmilia fiagdonensis Starostina & Krasnov; D. cf. laxata (Étallon); D. trichotoma Eguchi; D. tuapensis Baron-Szabo & Gonzalez.-León; Placophyllia grata Bugrova; Cairnsipsammia merbeleri Baron-Szabo; Morphastrea ludovici (Michelin) (emended herein); Ahrdorffia ornata (Morycowa); Astraeofungia tirnovoriana (Toula) (new combination); Actinaraea (Camptodocis) brancai (Dietrich); A. tenuis Morycowa; Rhipidomeandra bugrovae Morycowa & Masse; Comoseris aptiensis Baron-Szabo; Comoseris jireceki Toula; Polyphylloseris mammillata Eguchi; Ellipsocoenia barottei (de Fromentel) (new combination); Ellipsocoenia haimei (de Fromentel) (new combination); Dimorphastrea tenustriata de Fromentel; Latomeandra cf. plicata (Goldfuss); Microphyllia gemina Eliášová; Thalamocaeniopsis stricta (Milne Edwards & Haime)(new combination); Trigerastraea haldonensis (Duncan) (new combination); Heliocoenia rozkowskae Morycowa; H. vadosa (Počta); Stylosmilia corallina Koby; Cyathophora decipiens ramosa (Hackemesser) (new combination); C. mirtschinkae Kuzmicheva; Cladophyllia clemencia de Fromentel; C. conybearei Milne Edwards & Haime; C. crenata (Blanckenhorn); C. furcifera Roemer; C. rollieri (Koby); C. stutzi (Koby) (new combination); Amphiaulastrea conferta (Ogilvie); A. rarauensis (Morycowa); Heterocoenia inflexa (Eichwald); H. minima d’Orbigny; Acanthogyra aptiana Turnšek; as well as the new species Columnocoenia falkenbergensis. In addition, all the information about previously described taxa from the Schrattenkalk was evaluated with regard to their taxonomic assignment, stratigraphic and paleogeographic distribution, and paleoenvironmental relationships to faunas from other geographic areas and time periods. A total of 122 species belonging to 53 genera and 24 families are recognized from Schrattenkalk localities (western Austria, southern Germany, Switzerland). These include the taxa of both the Lower and Upper Schrattenkalk, and the intercalated Rawil Member. The Schrattenkalk coral fauna nearly exclusively consists of colonial forms of three general categories of polyp integration: cerioid-plocoid (33.6%); branching (18%); and (hydno-) meandroid-thamnasterioid (46.7%). Only two specimens were doubtfully assigned to solitary taxa. Corallite diameters range from less than 1 mm to over 20 mm and fall into three major corallite-size groups: small (up to 2.4 mm), medium (>2.4–9.5 mm), and large (>9.5 mm). The fauna is distinctly dominated by forms with medium-size corallites (68%), followed by forms having small-size corallites (26%). Together with the potential solitary taxa, corals with large-size corallites are of minimal importance to the total fauna. On the genus-level, the Schrattenkalk corals show closest affinities to coral assemblages of central (especially France; 55%), eastern and southern Europe (44‒49%), as well as Central America (47%). On the species-level, closest affinities are to coral assemblages of central, southeastern, and eastern Europe (16‒25.5%), as well as Central America (14%), but nearly a third of the Schrattenkalk species (30%) was restricted to the upper Barremian–lower Aptian of the Schrattenkalk Formation; this suggests that the Schrattenkalk platform sensu lato was a diversity center and a crucial reservoir for coral recruitment. The majority (86%) of the Schrattenkalk corals thrived in a shallow-water, reefal to perireefal, subtropical marine environment. In general, the Schrattenkalk coral assemblages are characteristic of moderate- to high-energy environments of the inner shelf to shore zone, having morphotype associations that typically prevail down to 10–15 m depth. In contrast, for the Upper Schrattenkalk coral fauna of central Switzerland (Hergiswil), a non-reefal paleoenvironment at a depth of several tens of meters is suggested by the morphotypes of the taxa and types of microfacies present. The corals of the Schrattenkalk Formation occurred in both photozoan (Lower and Upper Schrattenkalk members) and heterozoan (Rawil member) carbonate-producing communities. With regard to taxonomic diversity, the Schrattenkalk coral fauna is comparable to the most species-rich Upper Jurassic reef assemblages and represents the last major coral-reef development of the Mesozoic. 


10.26879/1030 ◽  
2021 ◽  
Author(s):  
Hannes Löser ◽  
Luis M. Nieto ◽  
José Manuel Castro ◽  
Matías Reolid
Keyword(s):  
Se Spain ◽  

2020 ◽  
Vol 28 (2) ◽  
pp. 193 ◽  
Author(s):  
Hannes Löser ◽  
Lorenzo Vilas ◽  
Consuelo Arias ◽  
Pedro A Ruíz-Ortiz ◽  
José M Castro ◽  
...  
Keyword(s):  

Author(s):  
Tatiana N. Dautova

This paper provides descriptions of two new species of Calcigorgia gorgonians collected from the Sea of Okhotsk between 1973 and 2008. The new species are Calcigorgia herba sp. nov. and С. lukini sp. nov., belonging to the deep-water coral fauna of the temperate Northern Pacific. The taxonomy structure of the genus is reviewed and a comparative table is provided for all known species of Calcigorgia. The following taxonomic changes are made: the diagnosis of the genus was corrected from that given in Matsumoto et al. (2019); synonymization of C. simushiri Dautova, 2018 with C. spiculifera Broch, 1935 and inclusion of additional specimens in C. japonica Dautova, 2007 (both performed by Matsumoto et al. 2019) are assumed erroneous. The finding of previously undescribed species emphasizes the need for further surveys, particularly in deeper waters, to improve knowledge of the Octocorallia fauna in Far East seas. The distribution of Calcigorgia (Octocorallia, Acanthogorgiidae) is reviewed and presented based on field and collection studies published since 1935 as well as miscellaneous data from previous literature.


2019 ◽  
Vol 93 (5) ◽  
pp. 856-875
Author(s):  
Xiaojuan Wang ◽  
Xiangdong Wang ◽  
Yichun Zhang ◽  
Changqun Cao ◽  
Dongjin Lee

AbstractThe rugose corals described in this study were collected from the Gyanyima section in the Ngari region of southwestern Tibet (Xizang) and are assigned to three genera and 11 species, including a new genus and seven new species: Waagenophyllum (Waagenophyllum) ngariense He, 1990; W. (W.) elegantulum He in Luo et al., 1989; W. (W.) minutum Zhao, 1981; W. (W.) tachtabulasicum Ilyina, 1997; W. (W.) gyanyimaense n. sp., W. (W.) intermedium n. sp., Waagenophyllum (Liangshanophyllum) clisicolumellum n. sp., Ipciphyllum naoticum n. sp., I. floricolumellum n. sp., I. zandaense n. sp., and Gyanyimaphyllum crassiseptatum n. gen. n. sp. Ontogeny and intraspecific variation are given special attention when describing and discussing these taxa. Coral reefs, with Waagenophyllum as the major skeletal reef builder, occur in several horizons in the uppermost part of the section. The accompanying foraminifers indicate the rugose coral fauna is a late Permian Changhsingian age. Therefore, this is possibly one of the latest Permian rugose coral reefs in the world known up to now.UUID: http://zoobank.org/b9e621cb-197d-4208-8267-14d62f382a1b


Ameghiniana ◽  
2019 ◽  
Vol 56 (1) ◽  
pp. 53
Author(s):  
Martín Hoqui ◽  
Graciela S. Bressan ◽  
Ricardo M. Palma

2018 ◽  
Vol 93 (3) ◽  
pp. 416-436 ◽  
Author(s):  
Paola Flórez ◽  
Paula Zapata-Ramírez ◽  
James S. Klaus

AbstractIn this contribution we describe and illustrate 14 coral morphospecies collected from the early Miocene Siamaná (Aquitanian–Burdigalian) and Jimol (late Burdigalian) formations of the Cocinetas Basin in La Guajira Peninsula, northern Colombia. Eleven were identified as already established species including seven genera belonging to the families Mussidae, Pocilloporidae, Poritidae, Siderastreidae, and Milleporidae; the other three remain in open nomenclature. Nine of the 11 species identified (81%) are extinct. The remaining two living species,Siderastrea sidereaandMillepora alcicornis, are common on modern Caribbean reefs. Their presence in the Siamaná Formation extends their temporal range in the Caribbean region to the early Miocene. Most of the taxa described here were hermatypic and zooxanthellate corals of the order Scleractinia, with the exception of the fire coralMillepora alcicornis, of the order Anthothecata, family Milleporidae. The coral fauna recorded in the Siamaná and Jimol formations is typical of shallow and calm waters of the Oligocene–Miocene transition.


2018 ◽  
Vol 93 (3) ◽  
pp. 399-415
Author(s):  
Xiangdong Wang ◽  
Mohammad N. Gorgij ◽  
Le Yao

AbstractTwelve rugose coral species belonging to seven genera are described and discussed based on 70 thin sections of 32 specimens collected from the Anarak section, northeast of Nain, Esfahan Province, Yazd Block, central Iran. These species include two new colonial rugose coral species,Antheria fedorowskiiandAntheria robusta, and five previously named species of colonial rugose corals,Antheria lanceolataandStreptophyllidium scitulum, and solitary rugose corals,Arctophyllum jiangsiense,Caninophyllumcf.somtaiense, andPseudotimania delicata. Five species are left in open nomenclature:Antheriasp.,Arctophyllumsp.,Caninophyllumsp.,Nephelophyllumsp., andYakovleviellasp. These Iranian corals are associated with the fusulinidsRauserites(several species) andUltradaixina bosbytauensis, indicating a latest Carboniferous age (Gzhelian age). All the described genera and named species belong to the families Aulophyllidae, Bothrophyllidae, Cyathopsidae, and Kepingophyllidae, among which the family Kepingophyllidae has been previously documented only from China and Indochina. They are typical representatives of the Cathaysian rugose fauna, which was widely developed around the South China and Indochina blocks near the paleoequator and was absent from the Gondwanan and Cimmerian continents in high latitudes during the Late Pennsylvanian. Hence, the occurrence of the Cathaysian fauna from central Iran in the latest Carboniferous suggests that it may have had a close biogeographical connection with China and Indochina, which further implies its latitudinal position intermediate between the Gondwanan continent and South China and Indochina blocks during this time.UUID:http://zoobank.org/5257d2bb-1346-4dee-8f3e-f4b1b33ba5a9


Zootaxa ◽  
2018 ◽  
Vol 4383 (1) ◽  
pp. 1 ◽  
Author(s):  
ROSEMARIE CHRISTINE BARON-SZABO

Scleractinian coral faunas from the upper Berriasian part of the Oehrli Formation of western Austria (Vorarlberg) and eastern Switzerland (Canton of Appenzell) are taxonomically described for the first time. Furthermore, scleractinian corals of the upper Berriasian part of the Oehrli Formation of the Swiss Cantons of Nidwalden and Uri are revised based on the study of type material. Lectotypes are designated for the species Dimorphocoeniopsis alpina (Koby, 1896) and Pleurophyllia tobleri (Koby, 1896). Sixty-one species belonging to 43 genera and 18 families were identified, making the coral fauna of the upper Oehrli Formation by far the most diverse among the Berriasian assemblages: Actinastrea pseudominima (Koby), A. sp., Adelocoenia bulgarica (Toula)(new combination), A. hexaphyllia (d’Orbigny)(new combination), A. radisensis (d’Orbigny)(new combination), Allocoeniopsis luciensis (d’Orbigny), Amphiaulastrea sp., Astraeofungia cf. decipiens (Michelin), Cladophyllia conybearei Milne Edwards & Haime, Columnocoenia ksiazkiewiczi Morycowa, Comoseris jireceki Toula, Complexastrea seriata Turnšek, C. lobata Geyer, Cycloria mariscali (Felix)(new combination), Dermosmilia capitata (Koby), D. simplex Koby, Dimorphastrea excavata d’Orbigny, D. explanata De Fromentel, Dimorphocoeniopsis alpina (Koby), Ellipsocoenia lorioli (Koby), Enallhelia compressa (Münster), E. rathieri d’Orbigny, Epistreptophyllum cf. densum Roniewicz, Fungiastraea moeschi (Koby), Heliocoenia corallina Koby, H. humberti Étallon, H. minima Sikharulidze, Heterocoenia cf. inflexa (Eichwald), Latiphyllia neocomiensis De Fromentel, Latiastrea mucronata Sikharulidze, Latomeandra sp., Meandrastrea rudis (De Fromentel)(new combination), M. cf. lamberti (Bataller), Meandrophyllia corrugata (Michelin), Microsolena major (Ferry), M. cf. subexcavata Eguchi, Mitrodendron cf. modicum Eliášová, Mixastraea polyseptata Morycowa, Montlivaltia arcuata Beauvais, M. kaufmanni Koby, M. truncata (Defrance, 1817), Myriophyllia cf. propria Sikharulidze, Paraclausastrea vorarlbergensis Baron-Szabo, Peplosmilia stutzi (Koby), Placocoenia heimi (Koby)(new combination), Placophyllia dianthus (Goldfuss), Plesiomontlivaltia paucisepta (Koby)(new combination), Pleurophyllia schmidti (Koby)(new combination), P. tobleri (Koby), Polyphylloseris icaunensis (d’Orbigny, 1850), Rhipidogyra cf. minima Koby, Stylangia cf. laddi Wells, Stylina pleionantha Meneghini, S. decipiens Étallon, S. cf. sparsa Trautschold, Stylosmilia alpina Koby, S. yabei Eguchi, Thecosmilia dichotoma (Koby), Th. sp., Trigerastraea gourdani (De Fromentel), and Vallimeandra cf. explanata (De Fromentel). Furthermore, five additional Berriasian coral faunas are reviewed and compared with the coral fauna of the upper Oehrli Formation. These five assemblages are from southern Ukraine (2 assemblages, consisting of five and 12 species, respectively), northern Tunisia (13 species), southern Spain (23 species), and central Tibet (11 species). Except for the faunas from central Tibet and northern Tunisia, the Berriasian coral assemblages are distinctly dominated by colonial species (70–95%); they represent largely isolated populations of mostly endemic species; and consist largely of genera that had already appeared in the Upper Jurassic (80–100%). On the species-level, however, with the exception of the coral assemblage of Spain, the Beriasian coral faunas are dominated by or completely consist of taxa that have their first occurrence in the Berriasian (54–100%). The Berriasian fauna of the upper Oehrli Formation described in this work contains nearly three times more species than found in the contemporaneous fauna of southern Spain which up to now was the largest known Berriasian fauna. Two of the upper Berriasian taxa described in the current work (Cycloria and Placocoenia) may be the first representatives of lineages that still occur today (Mussidae and Montastraeidae, respectively) as suggested by a recent study of the cox1 Intron in modern corals. 


Sign in / Sign up

Export Citation Format

Share Document