detergent compatibility
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Adedeji Nelson Ademakinwa ◽  
Zainab Adenike Ayinla ◽  
Femi Kayode Agboola

Abstract Aureobasidium pullulans α-amylase (ApAmy) mixed with melted agar-agar solution and drop-wisely added to a mixture of organic solvent solution allowed for the entrapment of the α-amylase in the agar-agar organic matrix as beads. The immobilized ApAmy’s characteristics and wash performance were elucidated in comparison with the soluble ApAmy. Agar-agar at 2.0 % (w/v) and toluene: chloroform at 3:1 resulted in the highest immobilization yield retaining about 98% residual activity after ten catalytic cycles. The optimum temperature and pH for the immobilized enzyme were 60ºC and 6.5 respectively. The immobilized ApAmy hydrolysed branched and linear substrates thus establishing its broad substrate specificity. Relatively, the immobilized ApAmy (iApAmy) was more tolerant to organic solvents than the free enzyme. The iApAmy was mildly inhibited by cobalt but metals such as zinc, manganese, calcium and sodium enhanced the free and immobilized ApAmy activity. The iApAmy had a higher washing efficiency (77%) in the presence of detergents than the free enzyme (68%) and control (36%). The iApAmy showed good potentials as a detergent additive and from its characteristics, it could be useful in other industrial applications.


2020 ◽  
Vol 42 (11) ◽  
pp. 2403-2412
Author(s):  
Carlos Eduardo Duffeck ◽  
Cíntia Lionela Ambrosio de Menezes ◽  
Maurício Boscolo ◽  
Roberto da Silva ◽  
Eleni Gomes ◽  
...  

Author(s):  
Atia Iqbal ◽  
Mahnoor

Cellulases are inducible enzymes that are synthesized by many microorganisms during their growth on cellulosic materials. Production of cellulase enzyme from bacteria has gained interest for applications in industries owing to their stability, catalytic activity and ease of production. In current study, total 40 cellulolytic bacteria were screened by agar well diffusion assay followed by Congo red stain. Cellulolytic bacteria were evaluated for detergent compatibility and de-staining ability. Bacterial cellulase production was optimized at different environmental conditions. Biochemical testing was done following Bergey’s manual. Ten cellulolytic bacteria selected, were gram positive. Bacteria showed best cellulolytic activity at 40oC to 60oC, at pH 9, lactose as carbon source and peptone as nitrogen source. Best hydrolysis zone shown was 45mm from strain MS22 and least zone was 6mm. The maximum detergent activity for surf excel was observed for G2 while the lowest was observed for MW22. Similarly, maximum activity for ariel and bonus were observed for RS5 and C3. G1 and C3 showed better clearance of ink as compared to other strains. In de-staining, G1, C1and MW17 showed better clearance of edible oil and G1, C2 and MW18 showed better clearance of grease. These promising cellulolytic bacteria can be used for various applications in different industries.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 132
Author(s):  
A Mousami Shankar ◽  
Dr G.V.D. Sirisha ◽  
Dr K. Vijaya Rachel

Enzymes have wide applications in detergent industry from early 1900’s. Mostly, clothes are soiled by protein based grime. Most of the detergents have either amylase / protease. Various sources were scrutinized for potent protease activity and Betel leaves were selected, the enzyme was then isolated, purified to homogeneity by ammonium sulphate precipitation, DEAE-Cellulose and gel permeation chromatographic techniques. The enzyme was monomeric in nature with a molecular mass of 38kDa as determined by native PAGE and SDS-PAGE. The enzyme shows maximum activity at 60oC and pH 4.0. The Km and Vmax of the enzyme were 4x10-3M and 54µmol/min/mg respectively. The enzyme was categorically inhibited by PCMB and iodo-acetamide suggesting it to have papain like nature. The stability of the enzyme is assessed over the stretch of alkaline pH and temperature. This evaluation validates the stability of the enzyme and its use in detergent formulations. It was evident that after adding the enzyme preparation the stains (tea, chocolate, blood) were removed much better than that of the controls, which affirms that papain like enzyme from betel leaves, enhances detergent activity.  


Sign in / Sign up

Export Citation Format

Share Document