green tide
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 79)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 174 ◽  
pp. 113253
Author(s):  
Chao Yuan ◽  
Jie Xiao ◽  
Xuelei Zhang ◽  
Jian Zhou ◽  
Zongling Wang

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxiang Miao ◽  
Jie Xiao ◽  
Shiliang Fan ◽  
Yu Zang ◽  
Xuelei Zhang ◽  
...  

An epiphytic gammarid species, Apohyale sp., was abundant in the floating Ulva prolifera (U. prolifera), which forms large-scale green tides in the Yellow Sea (YSGT). Field observation and laboratory experiments were subsequently conducted to study the species identity, abundance, and grazing effects on the floating algal biomass. The abundance of Apohyale sp. showed great spatial variation and varied from 0.03 to 1.47 inds g−1 in the YSGT. In average, each gram of Apohyale sp. body mass can consume 0.43 and 0.60 g algal mass of U. prolifera per day, and the grazing rates varied among the algae cultured with different nutritional seawaters. It was estimated that grazing of Apohale sp. could efficiently reduce ~0.4 and 16.6% of the algal growth rates in Rudong and Qingdao, respectively. The U. prolifera fragments resulting from gnawing of Apohyale sp. had a higher growth rate and similar photosynthetic activities compared to the floating algae, indicating probably positive feedback on the floating algal biomass. This research corroborated the significant impact of Apohyale sp. on the floating algal mass of YSGT through the top-down control. However, further research is needed to understand the population dynamics of these primary predators and hence their correlation with the expansion or decline of YSGT, especially under the complex food webs in the southern Yellow Sea.


Harmful Algae ◽  
2021 ◽  
Vol 110 ◽  
pp. 102133
Author(s):  
Bing-Han Li ◽  
Chun-Ying Liu ◽  
Xue Deng ◽  
Ke-Ke Wang ◽  
Lu Han ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2482
Author(s):  
Masanori Hiraoka

The green seaweed Ulva spp. constitute major primary producers in marine coastal ecosystems. Some Ulva populations have declined in response to ocean warming, whereas others cause massive blooms as a floating form of large thalli mostly composed of uniform somatic cells even under high temperature conditions—a phenomenon called “green tide”. Such differences in population responses can be attributed to the fate of cells between alternative courses, somatic cell division (vegetative growth), and sporic cell division (spore production). In the present review, I attempt to link natural population dynamics to the findings of physiological in vitro research. Consequently, it is elucidated that the inhibition of biomass allocation to sporulation is an important key property for Ulva to cause a huge green tide.


2021 ◽  
Vol 14 (10) ◽  
pp. 6049-6070
Author(s):  
Fucang Zhou ◽  
Jianzhong Ge ◽  
Dongyan Liu ◽  
Pingxing Ding ◽  
Changsheng Chen ◽  
...  

Abstract. Massive floating macroalgal blooms in the ocean result in many ecological consequences. Tracking their drifting pattern and predicting their biomass are essential for effective marine management. In this study, a physical–ecological model, the Floating Macroalgal Growth and Drift Model (FMGDM), was developed. Based on the tracking, replication, and extinction of Lagrangian particles, FMGDM is capable of determining the dynamic growth and drift pattern of floating macroalgae, with the position, velocity, quantity, and represented biomass of particles being updated synchronously between the tracking and the ecological modules. The particle tracking is driven by ocean flows and sea surface wind, and the ecological process is controlled by the temperature, irradiation, and nutrients. The flow and turbulence fields were provided by the unstructured grid Finite-Volume Community Ocean Model (FVCOM), and biological parameters were specified based on a culture experiment of Ulva prolifera, a phytoplankton species causing the largest worldwide bloom of green tide in the Yellow Sea, China. The FMGDM was applied to simulate the green tide around the Yellow Sea in 2014 and 2015. The model results, e.g., the distribution, and biomass of the green tide, were validated using the remote-sensing observation data. Given the prescribed spatial initialization from remote-sensing observations, the model was robust enough to reproduce the spatial and temporal developments of the green tide bloom and its extinction from early spring to late summer, with an accurate prediction for 7–8 d. With the support of the hydrodynamic model and biological macroalgae data, FMGDM can serve as a model tool to forecast floating macroalgal blooms in other regions.


Author(s):  
Hailong Zhang ◽  
Yibo Yuan ◽  
Yongjiu Xu ◽  
Xiaojing Shen ◽  
Deyong Sun ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (19) ◽  
pp. 3811
Author(s):  
Deyu An ◽  
Dingfeng Yu ◽  
Xiangyang Zheng ◽  
Yan Zhou ◽  
Ling Meng ◽  
...  

Large scale green macroalgae blooms (MABs) caused by Ulva prolifera have occurred regularly in the Yellow Sea since 2007. In the MAB dissipation phase, the landing or sinking and decomposition of U. prolifera would alter the physical-chemical environment of seawater and cause ecological, environmental, and economic problems. To understand MAB dissipation features, we used multiple sensors to analyze the spatiotemporal variation of the MAB dissipation phase in the southern Yellow Sea. The results show the variation in the daily dissipation rate (DR) was inconsistent from year to year. Based on the DR variation, a simple method of estimating MAB dissipation days was proposed for the first time. Verification results of the method, from 2018 to 2020, showed the estimated dissipation days were relatively consistent with the results obtained by remote sensing imagery. From 2007 to 2020, the order in which macroalgae landed in the coastal cities of Shandong Peninsula can be roughly divided into two types. In one type, the macroalgae landed first in Rizhao, followed by Qingdao, Rushan, and Haiyang. In the other type, they landed in the reverse order. The MABs annual distribution density showed significant differences in the southern Yellow Sea. These results provided a basis for evaluating the MABs’ impact on marine ecology and formulating the green-tide prevention and control strategies.


Sign in / Sign up

Export Citation Format

Share Document