Tidal Internal Waves in the Bransfield Strait, Antarctica

Author(s):  
Eugene Morozov ◽  
Dmitry Frey ◽  
Elizaveta Khimchenko

<p>Observations of tidal internal waves in the Bransfield Strait, Antarctica, are analyzed. The measurements were carried out for 14 days on a moored station equipped with five autonomous temperature and pressure sensors. The mooring was deployed on the slope of Nelson Island (South Shetland Islands archipelago) over a depth of 70 m at point 62°21ꞌ S, 58°49ꞌ W. Analysis is based on the fluctuations of isotherms.  Vertical displacements of temperature revealed that strong internal vertical oscillations up to 30–40 m are caused by the diurnal internal tide. Spectral analysis of vertical displacements of the 0.9°C isotherm showed a clear peak at a period of 24 h. It is known that the tides in the Bransfield Strait are mostly mixed diurnal and semidiurnal, but during the Antarctic summer, diurnal tide component may intensify. The velocity ellipses of the barotropic tidal currents were estimated using the global tidal model TPXO9.0. It was found that tidal ellipses rotate clockwise with a period of 24 h and anticlockwise with a period of 12 h. The waves are forced due to the interaction of the barotropic tide with the bottom topography. Diurnal internal tides do not develop at latitudes higher than 30º over flat bottom. The research was supported by RFBR grant 20-08-00246.</p>

1988 ◽  
Vol 39 (1) ◽  
pp. 1 ◽  
Author(s):  
PE Hollaway

The concept of defining an internal tide climate is used as a means of providing an assessment of the amplitude of semi-diurnal vertical displacements of density interfaces and of horizontal baroclinic currents at a particular location. The analysis uses current meter and thermistor chain observations from North Rankin, a location just seaward of the shelf break on the Australian North West Shelf, spanning a period of 28 months. Contributions from both principal lunar (M2) and principal solar (S2) period internal waves are considered. The final climatological averages (monthly values) show the baroclinic currents to be comparable to or stronger than the semi-diurnal barotropic currents at the same location for the majority of the year (October through to May). The temporal variability closely follows the variability in the stratification with very weak baroclinic motion during the winter months (June to September).


2008 ◽  
Vol 38 (6) ◽  
pp. 1238-1252 ◽  
Author(s):  
Jerome Aucan ◽  
Mark Merrifield

Abstract Moorings deployed on the south (August–November 2002) and north (November 2002–June 2003) flanks of the Kaena Ridge, Hawaii, are used to document the flow variability associated with mixing within 200 m from the boundary, deep along the ridge, as part of the Hawaii Ocean Mixing Experiment (HOME). At both sites, strong temperature inversions are detected with vertical scales of ∼100 m. A Thorpe-scale analysis of the overturns yields a time-averaged dissipation near the bottom at the south site (1.2 × 10−8 W kg−1) that is 10 times higher than the north site (1.9 × 10−9 W kg−1), with both higher than the dissipation at similar depths 30 km from the ridge. On the south flank, observed horizontal currents and vertical displacements are dominated by the semidiurnal internal tide. On the north flank, the semidiurnal tide is less energetic than on the south, with a different vertical structure as tidal amplitudes decrease toward the boundary. These differences are attributed to greater separation from the bottom of downward-propagating internal tides at the north site compared to the south site, resulting in higher mixing at the south site. Near the boundary, near-inertial to diurnal oscillations are more energetic at the north than the south site. This asymmetry is attributed to near-inertial internal waves that are generated north of the ridge by winter storms; the ridge shadows the equatorward-propagating near-inertial internal waves leading to negligible amplitudes on the southern lee side. The near-inertial waves combine with internal tidal motions to create high strain conditions that lead to mixing at the north site.


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2019 ◽  
Vol 49 (10) ◽  
pp. 2523-2533 ◽  
Author(s):  
Tyler D. Hennon ◽  
Matthew H. Alford ◽  
Zhongxiang Zhao

AbstractThough unresolved by Argo floats, internal waves still impart an aliased signal onto their profile measurements. Recent studies have yielded nearly global characterization of several constituents of the stationary internal tides. Using this new information in conjunction with thousands of floats, we quantify the influence of the stationary, mode-1 M2 and S2 internal tides on Argo-observed temperature. We calculate the in situ temperature anomaly observed by Argo floats (usually on the order of 0.1°C) and compare it to the anomaly expected from the stationary internal tides derived from altimetry. Globally, there is a small, positive correlation between the expected and in situ signals. There is a stronger relationship in regions with more intense internal waves, as well as at depths near the nominal mode-1 maximum. However, we are unable to use this relationship to remove significant variance from the in situ observations. This is somewhat surprising, given that the magnitude of the altimetry-derived signal is often on a similar scale to the in situ signal, and points toward a greater importance of the nonstationary internal tides than previously assumed.


2014 ◽  
Vol 44 (3) ◽  
pp. 834-849 ◽  
Author(s):  
Weifeng G. Zhang ◽  
Timothy F. Duda ◽  
Ilya A. Udovydchenkov

Abstract A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.


2021 ◽  
Author(s):  
Jonas Löb ◽  
Monika Rhein

<p>Low mode internal waves in the stratified ocean are generated by the interaction between barotropic tides and seafloor topography and by the wind field in the near-inertial range. They are crucial for interior mixing and for the oceanic energy pathways, since they carry a large portion of the energy of the entire internal wave field. Long-term observations of energy fluxes of internal waves are sparse. The aim of this work is to study the temporal variability of wind generated low mode near-inertial internal waves inside an internal tide beam emanating from seamounts south of the Azores. For this, 20 months of consecutive mooring observations are used to calculate the mode 1 and mode 2 near-inertial energy fluxes as well as kinetic and potential energies. The gathered time series of near-inertial internal wave energy flux is not steady due to its intermittent forcing and is neither dominated by either mode 1 or mode 2. It shows a peak induced by a distinct strong wind event which is directly linked to wind-power input into the mixed layer north-east of the mooring location, and allows a comparison between the wind event and a background state. Furthermore, indications of non-linear interactions of the near-inertial waves with the internal tides in the form of resonant triad interaction and non-linear self-interaction have been found. This study provides new insights on the relative importance of single wind events and reinforces the assumption of a global non-uniform distribution of near-inertial energy with emphasis in regions where these events occur often and regularly. It furthermore displays its importance to be adequately incorporated into ocean general circulation models and in generating ocean mixing estimates by near-inertial waves as a similarly important component next to the internal tides.</p>


2012 ◽  
Vol 588-589 ◽  
pp. 1964-1971
Author(s):  
Li Dan Wu ◽  
Chun Bao Miao

Internal tides generated by the interaction of the barotropic tide with bottom topography are studied by using an analytical solution. Tide-topography resonance takes place when the wavenumber of the truncated sinusoidal topography is equal to that of one baroclinic mode. The minimum amplitude of the resonant mode increases from the center of the domain to both sides of the topography; while the maximum keeps the same. Amplitudes of the internal tides and mode conversion rate are analyzed as a function of the length and wavenumber of the topography. For non-resonant modes, the amplitudes are weak and vary periodically with the extending of the topography, and are exactly zero when the length of topography is integral times of the mode-1 wavelength. For resonant modes, the amplitudes increase with the length of the topography. For each internal tide mode, there is a response zone, where the amplitude for one mode is obviously larger than other baroclinic modes. The response zones for high modes are wider than those for low modes. Mode conversion rate is obviously high when the wavenumber of the topography is equal to that of the baroclinic modes; otherwise it is almost zero. Furthermore, mode conversion rate for small topography wavenumber is more than that for large topography wavenumber with the same number of the sinusoidal topography, and is less with the same topography length.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
S. Yu. Volkov ◽  
S. R. Bogdanov ◽  
R. E. Zdorovennov ◽  
N. I. Palshin ◽  
G. E. Zdorovennova ◽  
...  

Purpose. The observation measurements testify the fact that heat and mass transfer processes in the shallow ice-covered lakes are not limited to the molecular diffusion only. In particular, the effective thermal diffusivity exceeds the molecular one by up to a few orders of magnitude. Now it is widely accepted that the transfer processes, in spite of their low intensity, are controlled by intermittent turbulence. At the same time, its nature and generation mechanism are still studied insufficiently. The paper represents one of such mechanisms associated with resonance generation of short internal waves by the barotropic seiches. Methods and Results. The temperature measurements in a shallow lake in winter were used as an experimental base. Having been analyzed, the temperature profiles’ dynamics observed during a few weeks after freezing revealed the anomalous values of thermal diffusivity. At that the temperature pulsations’ spectra clearly demonstrate the peak close to the main mode of barotropic seiches. Counter-phase oscillations at the different depths and pronounced heterogeneity of the amplitudes of temperature pulsations over depth indicate presence of internal waves. Based on these data, the mechanism of energy transfer from the barotropic seiches to the internal waves similar to the “tidal conversion” (the latter governs resonance generation of internal tides in the ocean), is proposed. The expressions for heat flux, energy dissipation rate and effective thermal diffusivity are derived. Conclusions. Internal waves can play an essential role in the processes of interior mixing and heat transfer in the ice-covered lakes. Though direct wind-induced turbulence production is inhibited, baric perturbations in the atmosphere can give rise to barotropic seiches, which play the role of an intermediate energy reservoir and can generate short resonant internal waves resulted from interaction with the undulate lake floor. The internal wave field parameters strongly depend on the barotropic seiche amplitudes, buoyancy frequency and the bottom topography features.


Author(s):  
Е. G. Morozov ◽  
D. I. Frey ◽  
S. V. Gladyshev ◽  
А. А. Klyuvitkin ◽  
А. N. Novigatsky

Six day temperature records carried out at the three mooring levels revealed isotherm fluctuations in the Denmark Strait sill in July 2018 caused by internal waves. In addition to the field measurements, fluctuations of isopycnals were estimated on the basis of a numerical model. It was shown that the vertical displacements of water particles caused by semidiurnal internal tides are approximately 50 m in the region of the sill crossing the strait. The displacements decrease to 30 m over a distance of 100 km from the sill. The internal waves in the northern part of the strait are more intense than in the southern part because the wave propagates in the opposite direction to the mean current. In the southern part the waves and the current propagate to the south, which increases the wavelength and decreases their amplitudes.


2020 ◽  
Author(s):  
Peiwen Zhang ◽  
Wenjia Min

<p>Internal waves with strong vertical mixing could be induced by stratified flow over seafloor obstacles. Noted that the stratified flow not only trigger internal tides, but also highly nonlinear internal waves like internal lee waves and internal solitary waves over steep topography features, and the highly nonlinear internal waves are suggested to play an important role in turbulence and mixing. As a typical seafloor obstacle, ridge could significantly modified the propagation of internal tide, internal lee wave and internal solitary wave. We focused on I-Lan ridge with asymmetrical topography feature in Kuroshio region. To the north of the I-Lan ridge, the depth of Philippine basin reached 4000m compared with the depth of 1500m in the south of the ridge, leading to different characteristics of internal wave energy field and ecological characteristics between two sides. Based on numerical simulations, we revealed the generation and propagation of internal waves over marginal ridge, causing by the shear current induced by Kuroshio. We also discussed the turbulence kinetic energy contributed by linear internal waves and nonlinear internal waves, providing the strength of vertical turbulent mixing around the I-Lan ridge. Then we demonstrated the characteristics of complex internal wave field in the strong background shear current over I-Lan ridge.</p>


Sign in / Sign up

Export Citation Format

Share Document