viscoelastic continuum damage
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Silvio Lisboa Schuster ◽  
Cléber Faccin ◽  
Fernando Dekeper Boeira ◽  
Luciano Pivoto Specht ◽  
Deividi da Silva Pereira ◽  
...  

2021 ◽  
Vol 306 ◽  
pp. 124853
Author(s):  
Ayat Al Assi ◽  
Husam Sadek ◽  
Carol Massarra ◽  
Mohammad Sadeq ◽  
Carol J. Friedland

Author(s):  
Biswajit K. Bairgi ◽  
Md Amanul Hasan ◽  
Rafiqul A. Tarefder

In the asphalt foaming process, the foaming water content (FWC) controls the formation and characteristics of water bubbles. These water bubbles are expected to be expelled from the foamed warm mix asphalt (WMA) during mixing and compaction. However, foaming water may not be completely expelled, rather some of the microbubbles may be trapped in the foamed WMA even after compaction. These microbubbles, or undissipated water, can diffuse over time and cause damage to the foamed WMA. To this end, this study has determined the effects of foaming on the fatigue, moisture damage, and permanent deformation characteristics of foamed WMA. Foamed asphalt and mixtures were designed with varying FWCs and they were tested using linear amplitude sweep, multiple stress creep recovery, four-point flexural beam, and Hamburg wheel tracking tests. Primarily, asphalt foaming dynamics were assessed with a laser-based non-contact method. A simplified viscoelastic continuum damage concept and a three-phase permanent deformation model were used for damage evaluation. The study reveals that foaming softens the binder, which results in slightly higher rutting and moisture susceptibility, though an equivalent or slightly improved fatigue characteristic compared with the regular hot mix asphalt.


Author(s):  
Jing Ding ◽  
Kangjin Caleb Lee ◽  
Cassie Castorena ◽  
Youngsoo Richard Kim ◽  
B. Shane Underwood

The simplified viscoelastic continuum damage model has been widely accepted as a tool to predict fatigue performance of asphalt concrete. One key component in the model is the damage characteristic curve that results from a cyclic fatigue test. This curve characterizes the relationship between material integrity (stiffness) and the level of damage in the material. As with any experimental measurement, it is important to know and quantify the variability of the damage curve, but traditional statistical methods are ill-suited for experiments that yield functional data as opposed to univariate data. In this study, a variance index of the damage characteristic curve is first proposed and compared with the expert judgment of the variance of a set of nine different asphalt mixtures. Then, an example analysis for establishing the repeatability limit of a specific mixture as the application of the variance index is presented using the resampling method and hypothesis test. The major findings are as follows: 1) the proposed variance index can match the expert judgment of variability; 2) the shape of the damage characteristic curve can affect the performance of the variance index; 3) the resampling method and hypothesis test can be applied to flag inconsistent data in multi-user or multi-laboratory results; and 4) the resampling method can also be used to construct the repeatability limit of the variance index.


Sign in / Sign up

Export Citation Format

Share Document