brine solution
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ji-Hyun Kim ◽  
et al.

Table S1: (ST1). PHREEQC inverse mixing modeling for the Mississippian Leadville Ls brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2); Table S2: (ST2). PHREEQC inverse mixing modeling for the salt anticline brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2).


2022 ◽  
Author(s):  
Ji-Hyun Kim ◽  
et al.

Table S1: (ST1). PHREEQC inverse mixing modeling for the Mississippian Leadville Ls brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2); Table S2: (ST2). PHREEQC inverse mixing modeling for the salt anticline brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2).


2021 ◽  
Vol 103 (4) ◽  
pp. 12-20
Author(s):  
Iskander Gussenov ◽  
Nurbatyr Mukhametgazy ◽  
Alexey Shakhvorostov ◽  
Sarkyt Kudaibergenov

High molecular weight amphoteric terpolymer based on a nonionic monomer, acrylamide (AAm), an anionic monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS), and a cationic monomer, (3-acrylamidopropyl) trimethylammonium chloride (APTAC), was prepared using free-radical copolymerization in an aqueous solution and characterized by 1H NMR, FTIR, GPC, DLS, zeta potential and viscometry. The polymer was shown to be viscosifying, and therefore can be utilized as a polymer flooding agent in the high salinity and temperature conditions of oil reservoirs. Injection of 0.25 wt.% of amphoteric terpolymer, dissolved in 200-300 g∙L-1 brine, into high and low permeability sand pack models demonstrated that the oil recovery factor (ORF) increases by up to 23-28% in comparison with saline water flooding. This is explained by an increase in the viscosity of brine solution due to disruption of intra- and interionic contacts between oppositely charged AMPS and APTAC moieties, demonstrating the antipolyelectrolyte effect. In high saline water, the anions and cations of salts screen the electrostatic attraction between positively and negatively charged macroions, resulting in expansion of the macromolecule. This phenomenon leads to an increase in the viscosifying effect on the brine solution, thus decreasing the mobility factor (M), which is defined as the ratio of displacing phase mobility (water) to displaced phase mobility (oil).


2021 ◽  
pp. 1-25
Author(s):  
Huijie Zhang ◽  
Shuhai Liu

Abstract The tribological properties of proppant particle sliding on shale rock determine the shale gas production. This work focuses on investigating the impacts of sliding speed on the coefficient of friction (COF) and wear of the silica ball-shale rock contact, which was lubricated by water or different types of polyacrylamide (PAM) aqueous or brine solution. The experimental results show that both boundary and mixed lubrication occur under specific speed and normal load. COF and wear depth of shale rock under water are higher than those under PAM solution due to superior lubrication of PAM. COF of shale rock under PAM brine solution increases and the wear of the rock is more serious, attributed to the corrosion of shale rock and adverse effect on lubrication of PAM by brine.


Author(s):  
Slamet Priyanto ◽  
Ronny Windu Sudrajat ◽  
Suherman Suherman ◽  
Bambang Pramudono ◽  
Teguh Riyanto ◽  
...  

Recently, the increase in fuel oil demand was not supported by petroleum production due to the low productivity of old wells. Furthermore, an appropriate technology, such as Enhanced Oil Recovery (EOR) technology, is needed to maximize the productivity of the old well. Therefore, the purpose of this study was to synthesize a polymeric surfactant for the EOR process from sodium lignosulfonate (SLS) and polyethylene glycol (PEG) in various SLS to PEG ratios, namely 1:1 (PS1), 1:0.8 (PS2), and 1:0.5 (PS3). The surfactants were characterized using several methods, such as Fourier Transform-Infrared spectroscopy (FT-IR), compatibility, stability, viscosity, and phase behavior tests. The performance of the surfactants for the EOR process in different brine solution concentrations (16,000 ppm and 20,000 ppm) was also studied. The result showed that the introduction of the PEG molecule to the surfactant had been successfully conducted as FT-IR analysis confirmed. The surfactant's hydrophilicity increased with the introduction of PEG due to the increase of the ether group. A Winsor Type I or lower phase microemulsion was formed due to the high hydrophilicity. The highest oil yield (79 %) was obtained by PS1 surfactant, which has the highest PEG dosage, in a brine solution of 1,600 ppm. Therefore, it was concluded that the introduction of PEG could increase the hydrophilicity, viscosity, and EOR performance.


2021 ◽  
Vol 266 ◽  
pp. 118109
Author(s):  
Zimin Wang ◽  
Haixin Shi ◽  
Feng Wang ◽  
Airong Wang ◽  
Qiang He ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
pp. 17-21
Author(s):  
Zina S Khudhir

Antibacterial activity of brine, Nisin, and ozonated water against E. coli O157:H7 viability in the experimentally local produced soft cheese (ELPSC) was conducted during the period from December 2019 till end of February 2020. The positive isolates were detected as 3 out of 25 samples (12%). Identification of E. coli O157:H7 from ELPSC pieces were confirmed by using selective agar, biochemical, and serological tests. The concentrations that used from each of brine (sodium chloride), Nisin solution, and ozonated water were 7% (w/v), 100 IU/mL, and 0.6 ppm, respectively. The initial mean values of the E. coli O157:H7 counts in the ELPSC pieces were 6.146 log10 CFU/g, the bacterial counts decreased significantly (P<0.05) from 6.146 (log10 CFU/g) at 0 hour (control) to 3.778, 4.380, and 4.544 (log10 CFU/g) after 2 h of contact time due to the antibacterial action of brine, Nisin solution and ozonated water, respectively at ambient temperature. The antibacterial activity of ozonated water at the concentration 0.6 ppm, Nisin solution at concentration 100 IU/mL alone after 2 h of contact time were reduce (2 log10) of bacterial population without complete inhibition of E. coli O157:H7 in ELPSC, decontamination of ELPSC by brine solution at concentration (7% w/V) for 2 h can be more effective compared to Nisin solution and ozonated water at ambient temperature, there was no increase in the inhibition level when the cheese samples were dipping in the brine solution for longer exposure time (6 h) at the same concentration.


2021 ◽  
Vol 13 (11) ◽  
pp. 5765
Author(s):  
Tauqeer Abbas ◽  
Dayakar Naik Lavadiya ◽  
Ravi Kiran

Deicing of pavements is essential to ensure safe and timely movement of traffic in geographical locations where snow and ice events are anticipated. State and local municipalities employ brine solution with 23.3 wt% sodium chloride (NaCl) available in the form of rock salt to deice the pavements. Unlike water, the brine solution does not freeze until the temperature falls below −21.0 °C, i.e., the freezing point of water is depressed by −21.0 °C with the addition of 23.3 wt% NaCl. The depressed freezing point of the brine solution plays a key role in deicing pavements. Unfortunately, a further increase in rock salt content does not lower the freezing point of the brine solution. In this study, different combinations of agricultural products such as polyols including sorbitol, maltitol, and mannitol in brine (23.3 wt% of NaCl in water), and NaCl-juice (corn and beet juice) were investigated to achieve freezing point depressions below −21.0 °C for potential deicing applications in extremely cold areas. Different weight fractions of polyols-brine solutions ranging from 7.14% to 27.77% were considered, and corresponding freezing points were determined. While the sorbitol-brine solution exhibited the lowest freezing point of −38.1 °C at a higher concentration, the maltitol-brine solution exhibited a freezing point of −35.6 °C at the same concentration. Based on the °Brix value, beet juice had almost three times more soluble solids and a lower freezing point compared to corn juice. Adding 23.3 wt% of NaCl in 70% corn juice lowered the freezing point up to −23.5 °C.


Sign in / Sign up

Export Citation Format

Share Document