fluid instabilities
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darío M. Escala ◽  
Alberto P. Muñuzuri

AbstractFluid instabilities have been the subject of study for a long time. Despite all the extensive knowledge, they still constitute a serious challenge for many industrial applications. Here, we experimentally consider an interface between two fluids with different viscosities and analyze their relative displacement. We designed the contents of each fluid in such a way that a chemical reaction takes place at the interface and use this reaction to suppress or induce a fingering instability at will. This process describes a road map to control viscous fingering instabilities in more complex systems via interfacial chemical reactions.


Author(s):  
Santiago A. Triana ◽  
Mathieu Dumberry ◽  
David Cébron ◽  
Jérémie Vidal ◽  
Antony Trinh ◽  
...  

Abstract Changes in the Earth’s rotation are deeply connected to fluid dynamical processes in the outer core. This connection can be explored by studying the associated Earth eigenmodes with periods ranging from nearly diurnal to multi-decadal. It is essential to understand how the rotational and fluid core eigenmodes mutually interact, as well as their dependence on a host of diverse factors, such as magnetic effects, density stratification, fluid instabilities or turbulence. It is feasible to build detailed models including many of these features, and doing so will in turn allow us to extract more (indirect) information about the Earth’s interior. In this article, we present a review of some of the current models, the numerical techniques, their advantages and limitations and the challenges on the road ahead.


Author(s):  
Jeff Porter ◽  
Pablo Salgado Sánchez ◽  
Valentina Shevtsova ◽  
Viktar Yasnou

We give a brief review of several prominent fluid instabilities representing transitions driven by gravity, surface tension, thermal energy, and applied motion/acceleration. Strategies for controlling these instabilities, including their pattern formation properties, are discussed. The importance of gravity for many common fluid instabilities is emphasized and used to understand the sometimes dramatically different behavior of fluids in microgravity environments. This is illustrated in greater detail, using recent results, for the case of the frozen wave instability, which leads to large columnar structures in the absence of gravity. The development of these highly nonlinear states is often complex, but can be manipulated through an appropriate choice of forcing amplitude, container length and height, initial inclination of the surface, and other parameters affecting the nonlinear and inhomogeneous growth process. The increased opportunity for controlling fluids and their instabilities via small forcing or parameter changes in microgravity is notable.


2021 ◽  
Author(s):  
Rachel Glade ◽  
Michael Fratkin ◽  
Mehdi Pouragha ◽  
Ali Seiphoori ◽  
Joel Rowland

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Injoo Hwang ◽  
Zeyi Guan ◽  
Chezheng Cao ◽  
Wenliang Tang ◽  
Chi On Chui ◽  
...  

AbstractUltra-long metal nanowires and their facile fabrication have been long sought after as they promise to offer substantial improvements of performance in numerous applications. However, ultra-long metal ultrafine/nanowires are beyond the capability of current manufacturing techniques, which impose limitations on their size and aspect ratio. Here we show that the limitations imposed by fluid instabilities with thermally drawn nanowires can be alleviated by adding tungsten carbide nanoparticles to the metal core to arrive at wire lengths more than 30 cm with diameters as low as 170 nm. The nanoparticles support thermal drawing in two ways, by increasing the viscosity of the metal and lowering the interfacial energy between the boron silicate and zinc phase. This mechanism of suppressing fluid instability by nanoparticles not only enables a scalable production of ultralong metal nanowires, but also serves for widespread applications in other fluid-related fields.


2020 ◽  
Vol 643 ◽  
pp. L13
Author(s):  
L. Dessart ◽  
D. John Hillier

Supernova (SN) explosions play a pivotal role in the chemical evolution of the Universe and the origin of life through the metals they release. Nebular phase spectroscopy constrains such metal yields, for example through forbidden line emission associated with O I, Ca II, Fe II, or Fe III. Fluid instabilities during the explosion produce a complex 3D ejecta structure, with considerable macroscopic, but no microscopic, mixing of elements. This structure sets a formidable challenge for detailed nonlocal thermodynamic equilibrium radiative transfer modeling, which is generally limited to 1D in grid-based codes. Here, we present a novel and simple method that allows for macroscopic mixing without any microscopic mixing, thereby capturing the essence of mixing in SN explosions. With this new technique, the macroscopically mixed ejecta are built by shuffling the shells from the unmixed coasting ejecta in mass space, or equivalently in velocity space. The method requires no change to the radiative transfer, but it necessitates high spatial resolution to resolve the rapid variation in composition with depth inherent to this shuffled-shell structure. We show the results for a few radiative-transfer simulations for a Type II SN explosion from a 15 M⊙ progenitor star. Our simulations capture the strong variations in temperature or ionization between the various shells that are rich in H, He, O, or Si. Because of nonlocal energy deposition, γ rays permeate through an extended region of the ejecta, making the details of the shell arrangement unimportant. The greater physical consistency of the method delivers spectral properties at nebular times that are more reliable, in particular in terms of individual emission line strengths, which may serve to constrain the SN yields as well as the progenitor mass for core collapse SNe. The method works for all SN types.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Bingrui Xu ◽  
Shuqi Ma ◽  
Yuanzhuo Xiang ◽  
Jing Zhang ◽  
Meifang Zhu ◽  
...  

AbstractIn-fiber structured particles and filament array have been recently emerging, providing unique advantages of feasible fabrication, diverse structures and sophisticated functionalities. This review will focus on the progress of this topic mainly from the perspective of fluid instabilities. By suppressing the capillary instability, the uniform layered structures down to nanometers are attained with the suitable materials selection. On the other hand, by utilizing capillary instability via post-drawing thermal treatment, the unprecedent structured particles can be designed with multimaterials for multifunctional fiber devices. Moreover, an interesting filamentation instability of a stretching viscous sheet has been identified during thermal drawing, resulting in an array of filaments. This review may inspire more future work to produce versatile devices for fiber electronics, either at a single fiber level or in large-scale fabrics and textiles, simply by manipulating and controlling fluid instabilities.


2019 ◽  
Author(s):  
Rebecca Weaver ◽  
Cheng-Nian Xiao ◽  
Inanc Senocak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document