planula larvae
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yuta Mitsuki ◽  
Naoko Isomura ◽  
Yoko Nozawa ◽  
Hiroyuki Tachikawa ◽  
Danwei Huang ◽  
...  

Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.


Hydrobiologia ◽  
2020 ◽  
Author(s):  
Alexandra Loveridge ◽  
Cathy H. Lucas ◽  
Kylie A. Pitt

AbstractScyphozoan jellyfish blooms display high interannual variability in terms of timing of appearance and size of the bloom. To understand the causes of this variability, the conditions experienced by the polyps prior to the production of ephyrae in the spring were examined. Polyps reared from planula larvae of Aurelia aurita medusae collected from southern England (50°49′58.8; − 1°05′36.9) were incubated under orthogonal combinations of temperature (4, 7, 10 °C) and duration (2, 4, 6, 8 weeks), representing the range of winter conditions in that region, before experiencing an increase to 13 °C. Timing and success of strobilation were recorded. No significant production of ephyrae was observed in any of the 2- and 4-week incubations, or in any 10 °C incubation. Time to first ephyra release decreased with longer winter incubations, and more ephyrae were produced following longer and colder winter simulations. This experiment indicates that A. aurita requires a minimum period of cooler temperatures to strobilate, and contradicts claims that jellyfish populations will be more prevalent in warming oceans, specifically in the context of warmer winter conditions. Such investigations on population-specific ontogeny highlights the need to examine each life stage separately as well as in the context of its environment.


Oceans ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 174-180
Author(s):  
William K. Fitt ◽  
Dietrich K. Hofmann

Benzophenones are UV-blockers found in most common sunscreens. The ability of Scyphozoan planula larvae of Cassiopea xamachana and C. frondosa to swim and complete metamorphosis in concentrations 0–228 µg/L benzophenone-3 (oxybenzone) was tested. Planulae of both species swam in erratic patterns, 25–30% slower, and experienced significant death (p < 0.05) in the highest concentrations of oxybenzone tested, whereas the larvae exhibited normal swimming patterns and no death in ≤2.28 µg/L oxybenzone. In addition, metamorphosis decreased 10–30% over 3 days for both species maintained in 228 µg/L oxybenzone. These effects do not involve symbiotic dinoflagellates, as planulae larvae of Cassiopea sp. are aposymbiotic. It is concluded that oxybenzone can have a detrimental impact on these jellyfish.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223214
Author(s):  
Isabel Freire ◽  
Eldad Gutner-Hoch ◽  
Andrea Muras ◽  
Yehuda Benayahu ◽  
Ana Otero

Hydrobiologia ◽  
2019 ◽  
Vol 842 (1) ◽  
pp. 113-126 ◽  
Author(s):  
Tsz Yan Ng ◽  
Apple Pui Yi Chui ◽  
Put Ang

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Nagayasu Nakanishi ◽  
Mark Q Martindale

Neuropeptides are evolutionarily ancient peptide hormones of the nervous and neuroendocrine systems, and are thought to have regulated metamorphosis in early animal ancestors. In particular, the deeply conserved Wamide family of neuropeptides—shared across Bilateria (e.g. insects and worms) and its sister group Cnidaria (e.g. jellyfishes and corals)—has been implicated in mediating life-cycle transitions, yet their endogenous roles remain poorly understood. By using CRISPR-Cas9-mediated reverse genetics, we show that cnidarian Wamide—referred to as GLWamide—regulates the timing of life cycle transition in the sea anemone cnidarian Nematostella vectensis. We find that mutant planula larvae lacking GLWamides transform into morphologically normal polyps at a rate slower than that of the wildtype control larvae. Treatment of GLWamide null mutant larvae with synthetic GLWamide peptides is sufficient to restore a normal rate of metamorphosis. These results demonstrate that GLWamide plays a dispensable, modulatory role in accelerating metamorphosis in a sea anemone.


2018 ◽  
Vol 201 ◽  
pp. 64-71 ◽  
Author(s):  
Maria Gambill ◽  
Sadie L. McNaughton ◽  
Markus Kreus ◽  
Myron A. Peck

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2979 ◽  
Author(s):  
Patricia Cabrales-Arellano ◽  
Tania Islas-Flores ◽  
Patricia E. Thomé ◽  
Marco A. Villanueva

Cassiopea xamachana jellyfish are an attractive model system to study metamorphosis and/or cnidarian–dinoflagellate symbiosis due to the ease of cultivation of their planula larvae and scyphistomae through their asexual cycle, in which the latter can bud new larvae and continue the cycle without differentiation into ephyrae. Then, a subsequent induction of metamorphosis and full differentiation into ephyrae is believed to occur when the symbionts are acquired by the scyphistomae. Although strobilation induction and differentiation into ephyrae can be accomplished in various ways, a controlled, reproducible metamorphosis induction has not been reported. Such controlled metamorphosis induction is necessary for an ensured synchronicity and reproducibility of biological, biochemical, and molecular analyses. For this purpose, we tested if differentiation could be pharmacologically stimulated as in Aurelia aurita, by the metamorphic inducers thyroxine, KI, NaI, Lugol’s iodine, H2O2, indomethacin, or retinol. We found reproducibly induced strobilation by 50 μM indomethacin after six days of exposure, and 10–25 μM after 7 days. Strobilation under optimal conditions reached 80–100% with subsequent ephyrae release after exposure. Thyroxine yielded inconsistent results as it caused strobilation occasionally, while all other chemicals had no effect. Thus, indomethacin can be used as a convenient tool for assessment of biological phenomena through a controlled metamorphic process in C. xamachana scyphistomae.


2016 ◽  
Author(s):  
Patricia Cabrales-Arellano ◽  
Tania Islas-Flores ◽  
Patricia E. Thomé ◽  
Marco A. Villanueva

Cassiopea xamachana jellyfish are an attractive model system to study metamorphosis and/or cnidarian-dinoflagellate symbiosis due to the ease of cultivation of their planula larvae and scyphistomae through their asexual cycle, in which the latter can bud new larvae and continue the cycle without differentiation into ephyrae. Then, a subsequent induction of metamorphosis and full differentiation into ephyrae is believed to occur when the symbionts are acquired by the scyphistomae. Although strobilation induction and differentiation into ephyrae can be accomplished in various ways, a controlled, reproducible metamorphosis induction has not been reported. Such controlled metamorphosis induction is necessary for an ensured synchronicity and reproducibility of biological, biochemical and molecular analyses. For this purpose, we tested if differentiation could be pharmacologically stimulated as in Aurelia aurita, by the metamorphic inducers thyroxine, KI, NaI, lugol's iodine, H2O2, indomethacin, or retinol. We found reproducibly induced strobilation by 50 µM indomethacin after 6 days of exposure, and 10-25 µM after 7 days. Strobilation under optimal conditions reached 80-100% with subsequent ephyrae release after exposure. Thyroxine yielded inconsistent results as it caused strobilation occasionally, while all other chemicals had no effect. Thus, indomethacin can be used as a convenient tool for assessment of biological phenomena through a controlled metamorphic process in C. xamachana scyphistomae.


Sign in / Sign up

Export Citation Format

Share Document