symbiodinium microadriaticum
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Xingjuan Wang ◽  
Zhongjie Wu ◽  
Yibo Wu ◽  
Mingxun An ◽  
Zhi Zhou ◽  
...  

The symbiosis of coral-Symbiodiniaceae is the quintessential basis of the coral reef ecosystem, and its breakdown results in coral bleaching, one of the most severe ecological catastrophes in the ocean. Critical to the establishment of the symbiosis is the host’s specific recognition of the symbionts through the binding of the coral host’s pattern recognition receptors (PRRs) to the symbiont cell surface’s glycoconjugates. However, the molecular basis for this recognition process is poorly understood. The present study investigated the binding affinities of the coral galectin PdGLT-1 to different symbiodiniacean species under different temperatures. At 25°C, the PdGLT-1 recombinant protein (rPdGLT-1) exhibited different binding affinities to different symbiodiniacean species from five genera, with a significantly higher binding affinity (p < 0.05) to Fugacium kawagutii (2.6-fold) and Cladocopium goreaui (1.9-fold) than Symbiodinium microadriaticum. The binding topology of rPdGLT-1 differed among the five symbiodiniacean species; for S. microadriaticum, Breviolum minutum, and Durusdinium trenchii, the binding was on some specific sites on the cell surface, whereas for C. goreaui and F. kawagutii, the binding signals were detected over the whole cell surface. Interestingly, PdGLT-1 binding induced agglutination of F. kawagutii cells but not of C. goreaui, explaining why C. goreaui was the most dominant symbiodiniacean symbionts in corals. Moreover, the affinity of rPdGLT-1 to Symbiodiniaceae was affected by temperature, and the highest binding affinities were observed at 30, 20, 30, 35, and 30°C for S. microadriaticum, B. minutum, C. goreaui, D. trenchii, and F. kawagutii, respectively. The optimal binding temperatures were consistent with the current understanding that D. trenchii was the most thermal resistant among these species. These results suggest that the binding affinity of the PRR PdGLT-1 may determine the specificity of host-symbiont pairing and explain why Cladocopium is the dominant symbionts of coral P. damicornis at normal temperature, and corals with Durusdinium symbionts may survive better at high temperature.


Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 811-821
Author(s):  
William K. Fitt ◽  
Dietrich K. Hofmann ◽  
Dustin W. Kemp ◽  
Aki H. Ohdera

The jellyfish Cassiopea xamachana and C. frondosa co-occur within some habitats in the Florida Keys, but the frequency with which this occurs is low. It is hypothesized that the symbiosis with different dinoflagellates in the Symbiodiniaceae is the reason: the medusae of C. xamachana contain heat-resistant Symbiodinium microadriaticum (ITS-type A1), whereas C. frondosa has heat-sensitive Breviolum sp. (ITS-type B19). Cohabitation occurs at depths of about 3–4 m in Florida Bay, where the water is on average 0.36 °C cooler, or up to 1.1 °C cooler per day. C. frondosa tends not to be found in the warmer and shallower (<2 m) depths of Florida Bay. While the density of symbionts is about equal in the small jellyfish of the two species, large C. frondosa medusae have a greater density of symbionts and appear darker in color compared to large C. xamachana. However, the number of symbionts per amebocyte are about the same, which implies that the large C. frondosa has more amebocytes than the large C. xamachana. The photosynthetic rate is similar in small medusae, but a greater reduction in photosynthesis is observed in the larger medusae of C. xamachana compared to those of C. frondosa. Medusae of C. xamachana have greater pulse rates than medusae of C. frondosa, suggestive of a greater metabolic demand. The differences in life history traits of the two species were also investigated to understand the factors that contribute to observed differences in habitat selection. The larvae of C. xamachana require lower concentrations of inducer to settle/metamorphose, and they readily settle on mangrove leaves, submerged rock, and sand compared to the larvae of C. frondosa. The asexual buds of C. xamachana are of a uniform and similar shape as compared to the variably sized and shaped buds of C. frondosa. The larger polyps of C. frondosa can have more than one attachment site compared to the single holdfast of C. xamachana. This appears to be an example of niche diversification that is likely influenced by the symbiont, with the ecological generalist and heat-resistant S. microadriaticum thriving in C. xamachana in a wider range of habitats as compared to the heat-sensitive symbiont Breviolum sp., which is only found in C. frondosa in the cooler and deeper waters.


2021 ◽  
Author(s):  
Yuki Yoshioka ◽  
Hiroshi Yamashita ◽  
Go Suzuki ◽  
Chuya Shinzato

Abstract Although numerous dinoflagellate species (Family Symbiodiniaceae) are present in coral reef environments, Acropora corals tend to select a single species, Symbiodinium microadriaticum, in early life stages, even though this species is rarely found in mature colonies. In order to identify molecular mechanisms involved in initial contact with native symbionts, we analyzed transcriptomic responses of Acropora tenuis larvae at 1, 3, 6, 12, and 24 h after their first contact, together with inoculation using non-native symbionts, including the non-symbiotic S. natans and the occasional symbiont, S. tridacnidorum. Some gene expression changes were detected in larvae inoculated with non-native symbionts 1 h post-inoculation (hpi)), but those returned to baseline levels afterward. In contrast, we found that the number of differentially expressed genes gradually increased in relation to inoculation time when larvae were exposed to native symbionts. As a specific response to native symbionts, upregulation of pattern recognition receptor-like and transporter genes, and suppression of cellular function genes related to immunity and apoptosis, were exclusively observed. These findings indicate that coral larvae recognize differences between symbionts, and when the appropriate symbionts infect, they coordinate gene expression to establish stable mutualism.


2021 ◽  
Vol 37 (11) ◽  
pp. 1044-1045
Author(s):  
Christian R. Voolstra ◽  
Manuel Aranda ◽  
Ye Zhan ◽  
Job Dekker

2021 ◽  
Author(s):  
Ankita Nand ◽  
Ye Zhan ◽  
Octavio R. Salazar ◽  
Manuel Aranda ◽  
Christian R. Voolstra ◽  
...  

AbstractDinoflagellates are main primary producers in the oceans, the cause of algal blooms and endosymbionts of marine invertebrates. Much remains to be understood about their biology, including their peculiar crystalline chromosomes. We assembled 94 chromosome-scale scaffolds of the genome of the coral endosymbiont Symbiodinium microadriaticum and analyzed their organization. Genes are enriched towards the ends of chromosomes and are arranged in alternating unidirectional blocks. Some chromosomes are enriched for genes involved in specific biological processes. The chromosomes fold as linear rods and each is composed of a series of structural domains separated by boundaries. Domain boundaries are positioned at sites where transcription of two gene blocks converges and disappear when cells are treated with chemicals that block transcription, indicating correlations between gene orientation, transcription and chromosome folding. The description of the genetic and spatial organization of the S. microadriaticum genome provides a foundation for deeper exploration of the extraordinary biology of dinoflagellates and their chromosomes.


2021 ◽  
Vol 9 (4) ◽  
pp. 791
Author(s):  
Tania Islas-Flores ◽  
Edgardo Galán-Vásquez ◽  
Marco A. Villanueva

The dinoflagellate Symbiodiniaceae family plays a central role in the health of the coral reef ecosystem via the symbiosis that establishes with its inhabiting cnidarians and supports the host metabolism. In the last few decades, coral reefs have been threatened by pollution and rising temperatures which have led to coral loss. These events have raised interest in studying Symbiodiniaceae and their hosts; however, progress in understanding their metabolism, signal transduction pathways, and physiology in general, has been slow because dinoflagellates present peculiar characteristics. We took advantage of one of these peculiarities; namely, the post-transcriptional addition of a Dino Spliced Leader (Dino-SL) to the 5′ end of the nuclear mRNAs, and used it to generate cDNA libraries from Symbiodinium microadriaticum. We compared sequences from two Yeast-Two Hybrid System cDNA Libraries, one based on the Dino-SL sequence, and the other based on the SMART technology (Switching Mechanism at 5′ end of RNA Transcript) which exploits the template switching function of the reverse transcriptase. Upon comparison of the performance of both libraries, we obtained a significantly higher yield, number and length of sequences, number of transcripts, and better 5′ representation from the Dino-SL based library than from the SMART library. In addition, we confirmed that the cDNAs from the Dino-SL library were adequately expressed in the yeast cells used for the Yeast-Two Hybrid System which resulted in successful screening for putative SmicRACK1 ligands, which yielded a putative hemerythrin-like protein.


2020 ◽  
Author(s):  
Ankita Nand ◽  
Ye Zhan ◽  
Octavio R. Salazar ◽  
Manuel Aranda ◽  
Christian R. Voolstra ◽  
...  

AbstractDinoflagellates are major primary producers in the world’s oceans, the cause of harmful algal blooms, and endosymbionts of marine invertebrates. Much remains to be understood about their biology including their peculiar crystalline chromosomes. Here we used Hi-C to order short read-based sub-scaffolds into 94 chromosome-scale scaffolds of the genome of the coral endosymbiont Symbiodinium microadriaticum. Hi-C data show that chromosomes are folded as linear rods within which loci separated by up to several Mb are highly packed. Each chromosome is composed of a series of structural domains separated by boundaries. Genes are enriched towards the ends of chromosomes and are arranged in unidirectional blocks that alternate between top and bottom strands. Strikingly, the boundaries of chromosomal domains are positioned at sites where transcription of two gene blocks converges, indicating a correlation between gene orientation, transcription and chromosome folding. Some chromosomes are enriched for genes involved in specific biological processes (e.g., photosynthesis, and nitrogen-cycling), and functionally related genes tend to co-occur at adjacent sites in the genome. All chromosomes contain several repeated segments that are enriched in mobile elements. The assembly of the S. microadriaticum genome and initial description of its genetic and spatial organization provide a foundation for deeper exploration of the extraordinary biology of dinoflagellates and their chromosomes.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0211936 ◽  
Author(s):  
Jit Ern Chen ◽  
Adrian C. Barbrook ◽  
Guoxin Cui ◽  
Christopher J. Howe ◽  
Manuel Aranda

2018 ◽  
Vol 66 (2) ◽  
pp. 254-266
Author(s):  
Tania Islas-Flores ◽  
Esmeralda Pérez-Cervantes ◽  
Jessica Nava-Galeana ◽  
Montserrat Loredo-Guillén ◽  
Gabriel Guillén ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document