active proliferation
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 66 (4) ◽  
Author(s):  
Valeriia Khabibulina ◽  
Viktor Starunov

Polyps of the Cassiopeidae family possess a unique type of asexual reproduction by producing free-swimming buds — planuloids. The process of planuloid development and transformation to polyp has been described earlier, however, the source of tissue formation is still poorly studied. Using the method of EdU incorporation we have analyzed DNA synthesis activity during planuloid formation and growth in Cassiopea xamachana. We revealed the active proliferation zone at the early stage of bud formation. This zone continued to function during planuloid growth, providing the formation of polyp structures, and preserved in polyp calyx after metamorphosis. Its proliferation activity varied at different growth stages, whereas the localization remained relatively the same.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhuo Chang ◽  
Hui Zhu ◽  
Xueming Zhou ◽  
Yang Zhang ◽  
Bei Jiang ◽  
...  

Infertility is a global reproductive disorder which is caused by a variety of complex diseases. Infertility affects the individual, family, and community through physical, psychological, social and economic consequences. The results from recent preclinical studies regarding stem cell-based therapies are promising. Stem cell-based therapies cast a new hope for infertility treatment as a replacement or regeneration strategy. The main features and application prospects of mesenchymal stem cells in the future of infertility should be understood by clinicians. Mesenchymal stem cells (MSCs) are multipotent stem cells with abundant source, active proliferation, and multidirectional differentiation potential. MSCs play a role through cell homing, secretion of active factors, and participation in immune regulation. Another advantage is that, compared with embryonic stem cells, there are fewer ethical factors involved in the application of MSCs. However, a number of questions remain to be answered prior to safe and effective clinical application. In this review, we summarized the recent status of MSCs in the application of the diseases related to or may cause to infertility and suggest a possible direction for future cytotherapy to infertility.


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
José María Martín-Durán

Abstract Background Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored. Results Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally. Conclusions Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.


2021 ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
Jose M Martin-Duran

Abstract Background : Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis , a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.Results : O. fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately five hours post fertilization (hpf) at 19 ºC. Gastrulation occurs via invagination and completes four hours later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorsoposterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin1 ) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide + neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~3 weeks post fertilization at 15 ºC, when a conspicuous juvenile rudiment has formed ventrally.Conclusions : O. fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more complex than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.


2021 ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
José María Martín-Durán

AbstractBackgroundAnnelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.ResultsO. fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately five hours post fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes four hours later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorsoposterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ∼3 weeks post fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally.ConclusionsO. fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more complex than previously recognised and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.


Author(s):  
Ismael Hernández-Núñez ◽  
Diego Robledo ◽  
Hélène Mayeur ◽  
Sylvie Mazan ◽  
Laura Sánchez ◽  
...  

Neurogenesis is the process by which progenitor cells generate new neurons. As development progresses neurogenesis becomes restricted to discrete neurogenic niches, where it persists during postnatal life. The retina of teleost fishes is thought to proliferate and produce new cells throughout life. Whether this capacity may be an ancestral characteristic of gnathostome vertebrates is completely unknown. Cartilaginous fishes occupy a key phylogenetic position to infer ancestral states fixed prior to the gnathostome radiation. Previous work from our group revealed that the juvenile retina of the catshark Scyliorhinus canicula, a cartilaginous fish, shows active proliferation and neurogenesis. Here, we compared the morphology and proliferative status of the retina in catshark juveniles and adults. Histological and immunohistochemical analyses revealed an important reduction in the size of the peripheral retina (where progenitor cells are mainly located), a decrease in the thickness of the inner nuclear layer (INL), an increase in the thickness of the inner plexiform layer and a decrease in the cell density in the INL and in the ganglion cell layer in adults. Contrary to what has been reported in teleost fish, mitotic activity in the catshark retina was virtually absent after sexual maturation. Based on these results, we carried out RNA-Sequencing (RNA-Seq) analyses comparing the retinal transcriptome of juveniles and adults, which revealed a statistically significant decrease in the expression of many genes involved in cell proliferation and neurogenesis in adult catsharks. Our RNA-Seq data provides an excellent resource to identify new signaling pathways controlling neurogenesis in the vertebrate retina.


2020 ◽  
Author(s):  
Young-Jun Ju ◽  
Kyung-Min Lee ◽  
Girak Kim ◽  
Yoon-Chul Kye ◽  
Han Wool Kim ◽  
...  

Abstract Gastrointestinal tract is the first organ to be directly affected upon fasting. However, little is known about how the fasting influences intestinal immune system. In the present study, we focused on the changes of intestinal dendritic cells (DCs) in mice upon short-term fasting and how the changes influence protective immunity against Listeria monocytogenes (LM) infection. We found that the fasting induces an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SI LP) and mesenteric lymph nodes (mLN) and the SI LP CD103+CD11b- DCs undergo an active proliferation and migration by increased levels of GM-CSF and CCR7, respectively. At 24 hours post-infection (hpi) of LM, there was a significant reduction of bacterial burden from the spleen, liver, and mLN of the short-term fasting mice compared to those of ad libitum mice. Accordingly, short-term fasting mice showed enhanced survival against LM infection when compared with ad libitum mice. Furthermore, significantly high amount of TGF-β2 and Aldh1a2 expression from CD103+CD11b- DCs in mouse infected with LM sequentially caused the following events: the increase of Foxp3+ Tregs, preferential change in the composition of CD103+ to CD103- DCs, and the induction of IFN-γ producing cells. Collectively, increase of intestinal CD103+ DCs by short-term fasting is a key player for protection against LM infection through the changes of functional features from tolerogenic to Th1 immunogenic.


2020 ◽  
Author(s):  
Ismael Hernández-Núñez ◽  
Diego Robledo ◽  
Hélène Mayeur ◽  
Sylvie Mazan ◽  
Laura Sánchez ◽  
...  

AbstractNeurogenesis is the process by which progenitor cells generate new neurons. As development progresses neurogenesis becomes restricted to concrete neurogenic niches, where it persists during postnatal life. The retina of teleost fishes is thought to proliferate and produce new cells throughout life. Whether this capacity may be an ancestral characteristic of jawed vertebrates, shared with chondrichthyans, which diverged from osteichthyans prior to the gnathostome radiation is completely unknown. Previous work from our group revealed that the juvenile retina of the catshark Scyliorhinus canicula shows active proliferation and neurogenesis. Here, we compared the morphology and proliferative status of the retina between catshark juveniles and adults. Histological analyses revealed an important reduction in the size of the peripheral retina (where progenitor cells are mainly located), an increase in the thickness of the plexiform layers and a decrease in the thickness of the inner nuclear layer in adults. Contrary to what has been reported in teleost fish, we did not observe active mitotic activity in the catshark retina after sexual maturation, suggesting that there is no significant proliferation and neurogenesis in adult specimens. Based on these results, we carried out RNA-Sequencing (RNA-Seq) analyses comparing the retinal transcriptome of juveniles and adults, which revealed a statistically significant decrease in the expression of many genes involved in cell proliferation and neurogenesis in adult catsharks. Our RNA-Seq data provides an excellent resource to identify new signaling pathways controlling neurogenesis in the vertebrate retina.


Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev195388
Author(s):  
Sha Wang ◽  
James P. Roy ◽  
Abigail J. Tomlinson ◽  
Ellen B. Wang ◽  
Yu-Hwai Tsai ◽  
...  

ABSTRACTBetween embryonic days 10.5 and 14.5, active proliferation drives rapid elongation of the murine midgut epithelial tube. Within this pseudostratified epithelium, nuclei synthesize DNA near the basal surface and move apically to divide. After mitosis, the majority of daughter cells extend a long, basally oriented filopodial protrusion, building a de novo path along which their nuclei can return to the basal side. WNT5A, which is secreted by surrounding mesenchymal cells, acts as a guidance cue to orchestrate this epithelial pathfinding behavior, but how this signal is received by epithelial cells is unknown. Here, we have investigated two known WNT5A receptors: ROR2 and RYK. We found that epithelial ROR2 is dispensable for midgut elongation. However, loss of Ryk phenocopies the Wnt5a−/− phenotype, perturbing post-mitotic pathfinding and leading to apoptosis. These studies reveal that the ligand-receptor pair WNT5A-RYK acts as a navigation system to instruct filopodial pathfinding, a process that is crucial for continuous cell cycling to fuel rapid midgut elongation.


2020 ◽  
Author(s):  
Till L.V. Bornemann ◽  
Sarah P. Esser ◽  
Tom L. Stach ◽  
Tim Burg ◽  
Alexander J. Probst

AbstractResolving bacterial and archaeal genomes from metagenomes has revolutionized our understanding of Earth’s biomes, yet producing high quality genomes from assembled fragments has been an ever-standing problem. While automated binning software and their combination produce prokaryotic bins in high-throughput, their manual refinement has been slow and sometimes difficult. Here, we present uBin, a GUI-based, standalone bin refiner that runs on all major operating platforms and was specifically designed for educational purposes. When applied to the public CAMI dataset, refinement of bins was able to improve 78.9% of bins by decreasing their contamination. We also applied the bin refiner as a standalone binner to public metagenomes from the International Space Station and demonstrate the recovery of near-complete genomes, whose replication indices indicate active proliferation of microbes in Earth’s lower orbit. uBin is an easy to install software for bin refinement, binning of simple metagenomes and communication of metagenomic results to other scientists and in classrooms. The software is open source and available under https://github.com/ProbstLab/uBin.


Sign in / Sign up

Export Citation Format

Share Document