biotic ligand
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 27)

H-INDEX

41
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 246
Author(s):  
Tony Venelinov ◽  
Stefan Tsakovski

The metal bioavailability concept is implemented in the Water Framework Directive (WFD) compliance assessment. The bioavailability assessment is usually performed by the application of user-friendly Biotic Ligand Models (BLMs), which require dissolved metal concentrations to be used with the “matching” data of the supporting physicochemical parameters of dissolved organic carbon (DOC), pH and Cadissolved. Many national surface water monitoring networks do not have sufficient matching data records, especially for DOC. In this study, different approaches for dealing with the missing DOC data are presented: substitution using historical data; the appropriate percentile of DOC concentrations; and combinations of the two. The applicability of the three following proposed substitution approaches is verified by comparison with the available matching data: (i) calculations from available TOC data; (ii) the 25th percentile of the joint Bulgarian monitoring network DOC data (measured and calculated by TOC); and (iii) the 25th percentile of the calculated DOC from the matching TOC data for the investigated surface water body (SWB). The application of user-friendly BLMs (BIO-MET, M-BAT and PNEC Pro) to 13 surface water bodies (3 reservoirs and 10 rivers) in the Bulgarian surface waters monitoring network outlines that the suitability of the substitution approaches decreases in order: DOC calculated by TOC > the use of the 25th percentile of the data for respective SWB > the use of the 25th percentile of the Bulgarian monitoring network data. Additionally, BIO-MET is the most appropriate tool for the bioavailability assessment of Cu, Zn and Pb in Bulgarian surface water bodies.


2021 ◽  
Author(s):  
Jiwoong Chung ◽  
Geonwoo Yoo ◽  
Jinhee Choi ◽  
Jong-Hyeon Lee

The copper biotic ligand model (BLM) has been used for environmental risk assessment by taking into account the bioavailability of copper in freshwater. However, the BLM-based environmental risk of copper has been assessed only in Europe and North America, with monitoring datasets containing all of the BLM input variables. For other areas, it is necessary to apply surrogate tools with reduced data requirements to estimate the BLM-based predicted no-effect concentration (PNEC) from commonly available monitoring datasets. To develop an optimized PNEC estimation model based on an available monitoring dataset, an initial model that considers all BLM variables, a second model that requires variables excluding alkalinity, and a third model using electrical conductivity as a surrogate of the major cations and alkalinity have been proposed. Furthermore, deep neural network (DNN) models have been used to predict the nonlinear relationships between the PNEC (outcome variable) and the required input variables (explanatory variables). The predictive capacity of DNN models in this study was compared with the results of other existing PNEC estimation tools using a look-up table and multiple linear and multivariate polynomial regression methods. Three DNN models, using different input variables, provided better predictions of the copper PNECs compared with the existing tools for four test datasets, i.e., Korean, United States, Swedish, and Belgian freshwaters. The adjusted r2 values in all DNN models were higher than 0.95 in the test datasets, except for the Swedish dataset (adjusted r2 > 0.87). Consequently, the most applicable model among the three DNN models could be selected according to the data availability in the collected monitoring database. Because the most simplified DNN model required only three water quality variables (pH, dissolved organic carbon, and electrical conductivity) as input variables, it is expected that the copper BLM-based risk assessment can be applied to monitoring datasets worldwide.


2021 ◽  
Vol 780 ◽  
pp. 146425
Author(s):  
Jiwoong Chung ◽  
Dae-sik Hwang ◽  
Dong-Ho Park ◽  
Youn-Joo An ◽  
Dong-Hyuk Yeom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document