golgi secretory function
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2018 ◽  
Vol 293 (37) ◽  
pp. 14407-14416 ◽  
Author(s):  
Antje Jensch ◽  
Yannick Frey ◽  
Katharina Bitschar ◽  
Patrick Weber ◽  
Simone Schmid ◽  
...  

2006 ◽  
Vol 34 (3) ◽  
pp. 363-366 ◽  
Author(s):  
S. Lev

The unique lipid composition of the Golgi membranes is critical for maintaining their structural and functional identity, and is regulated by local lipid metabolism, a variety of lipid-binding, -modifying, -sensing and -transfer proteins, and by selective lipid sorting mechanisms. A growing body of evidence suggests that certain lipids, such as phosphoinositides and diacylglycerol, regulate Golgi-mediated transport events. However, their exact role in this process, and the underlying mechanisms that maintain their critical levels in specific membrane domains of the Golgi apparatus, remain poorly understood. Nevertheless, recent advances have revealed key regulators of lipid homoeostasis in the Golgi complex and have demonstrated their role in Golgi secretory function.


2005 ◽  
Vol 7 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Vladimir Litvak ◽  
Nili Dahan ◽  
Sreekumar Ramachandran ◽  
Helena Sabanay ◽  
Sima Lev

2001 ◽  
Vol 12 (4) ◽  
pp. 1117-1129 ◽  
Author(s):  
Zhigang Xie ◽  
Min Fang ◽  
Vytas A. Bankaitis

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.


2001 ◽  
Vol 12 (4) ◽  
pp. 901-917 ◽  
Author(s):  
Yukiko Nakase ◽  
Taro Nakamura ◽  
Aiko Hirata ◽  
Sheri M. Routt ◽  
Henry B. Skinner ◽  
...  

The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that thespo20+gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.


1993 ◽  
Vol 122 (1) ◽  
pp. 79-94 ◽  
Author(s):  
EA Whitters ◽  
AE Cleves ◽  
TP McGee ◽  
HB Skinner ◽  
VA Bankaitis

Mutations in the SAC1 gene exhibit allele-specific genetic interactions with yeast actin structural gene defects and effect a bypass of the cellular requirement for the yeast phosphatidylinositol/phosphatidylcholine transfer protein (SEC14p), a protein whose function is essential for sustained Golgi secretory function. We report that SAC1p is an integral membrane protein that localizes to the yeast Golgi complex and to the yeast ER, but does not exhibit a detectable association with the bulk of the yeast F-actin cytoskeleton. The data also indicate that the profound in vivo effects on Golgi secretory function and the organization of the actin cytoskeleton observed in sac1 mutants result from loss of SAC1p function. This cosuppression of actin and SEC14p defects is a unique feature of sac1 alleles as mutations in other SAC genes that result in a suppression of actin defects do not result in phenotypic suppression of SEC14p defects. Finally, we report that sac1 mutants also exhibit a specific inositol auxotrophy that is not exhibited by the other sac mutant strains. This sac1-associated inositol auxotrophy is not manifested by measurable defects in de novo inositol biosynthesis, nor is it the result of some obvious defect in the ability of sac1 mutants to utilize inositol for phosphatidylinositol biosynthesis. Thus, sac1 mutants represent a novel class of inositol auxotroph in that these mutants appear to require elevated levels of inositol for growth. On the basis of the collective data, we suggest that SAC1p dysfunction exerts its pleiotropic effects on yeast Golgi function, the organization of the actin cytoskeleton, and the cellular requirement for inositol, through altered metabolism of inositol glycerophospholipids.


Sign in / Sign up

Export Citation Format

Share Document