aseismic deformation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 116 (8) ◽  
pp. 1849-1864
Author(s):  
Nicholas J.R. Hunter ◽  
Christopher R. Voisey ◽  
Andrew G. Tomkins ◽  
Christopher J.L. Wilson ◽  
Vladimir Luzin ◽  
...  

Abstract In many orogenic gold deposits, gold is located in quartz veins. Understanding vein development at the microstructural scale may therefore provide insights into processes influencing the distribution of gold, its morphology, and its relationship to faulting. We present evidence that deformation processes during aseismic periods produce characteristic quartz microstructures and crystallographic preferred orientations, which are observed across multiple deposits and orogenic events. Quartz veins comprise a matrix of coarse, subidiomorphic, and columnar grains overprinted by finer-grained quartz seams subparallel to the fault trace, which suggests an initial stage of cataclastic deformation. The fine-grained quartz domains are characterized by well-oriented quartz c-axis clusters and girdles oriented parallel to the maximum extension direction, which reveals that fluid-enhanced pressure solution occurred subsequent to grain refinement. Coarser anhedral gold is associated with primary quartz, whereas fine-grained, “dusty” gold trails are found within the fine-grained quartz seams, revealing a link between aseismic deformation and gold morphology. These distinct quartz and gold morphologies, observed at both micro- and macroscale, suggest that both seismic fault-valving and aseismic deformation processes are both important controls on gold distribution.


2021 ◽  
Author(s):  
Vasiliki Mouslopoulou ◽  
Gian Maria Bocchini ◽  
Simone Cesca ◽  
Vasso Saltogianni ◽  
Jonathan Bedford ◽  
...  

<p>The month-to-year-long deformation of the Earth’s crust where active subduction zones terminate is poorly explored. Here we report on a multidisciplinary dataset that captures the synergy of slow-slip events, earthquake swarms and fault-interactions during the ~5 years leading up to the 2018 M<sub>w</sub> 6.9 Zakynthos Earthquake at the western termination of the Hellenic Subduction System (HSS). It appears that this long-lasting preparatory phase initiated due to a slow-slip event that lasted ~4 months and released strain equivalent to a ~M<sub>w</sub> 6.3 earthquake. We propose that the slow-slip event, which is the first to be reported in the HSS, tectonically destabilised the upper 20-40 km of the crust, producing alternating phases of seismic and aseismic deformation, including intense microseismicity (M<4) on neighbouring faults, earthquake swarms in the epicentral area of the M<sub>w</sub> 6.9 earthquake ~1.5 years before the main event, another episode of slow-slip immediately preceding the mainshock and, eventually, the large (M<sub>w </sub>6.9) Zakynthos Earthquake. Tectonic instability in the area is evidenced by a prolonged (~4 years) period of overall suppressed b-values (<1) and strong earthquake interactions on discrete strike-slip, thrust and normal faults. We propose that composite faulting patterns accompanied by alternating (seismic/aseismic) deformation styles may characterise multi-fault subduction-termination zones and may operate over a range of timescales (from individual earthquakes to millions of years).</p>


2020 ◽  
Vol 177 (12) ◽  
pp. 5741-5760 ◽  
Author(s):  
Georg Dresen ◽  
Grzegorz Kwiatek ◽  
Thomas Goebel ◽  
Yehuda Ben-Zion

AbstractNatural earthquakes often have very few observable foreshocks which significantly complicates tracking potential preparatory processes. To better characterize expected preparatory processes before failures, we study stick-slip events in a series of triaxial compression tests on faulted Westerly granite samples. We focus on the influence of fault roughness on the duration and magnitude of recordable precursors before large stick–slip failure. Rupture preparation in the experiments is detectable over long time scales and involves acoustic emission (AE) and aseismic deformation events. Preparatory fault slip is found to be accelerating during the entire pre-failure loading period, and is accompanied by increasing AE rates punctuated by distinct activity spikes associated with large slip events. Damage evolution across the fault zones and surrounding wall rocks is manifested by precursory decrease of seismic b-values and spatial correlation dimensions. Peaks in spatial event correlation suggest that large slip initiation occurs by failure of multiple asperities. Shear strain estimated from AE data represents only a small fraction (< 1%) of total shear strain accumulated during the preparation phase, implying that most precursory deformation is aseismic. The relative contribution of aseismic deformation is amplified by larger fault roughness. Similarly, seismic coupling is larger for smooth saw-cut faults compared to rough faults. The laboratory observations point towards a long-lasting and continuous preparation process leading to failure and large seismic events. The strain partitioning between aseismic and observable seismic signatures depends on fault structure and instrument resolution.


Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1333-1360 ◽  
Author(s):  
Simon Preuss ◽  
Jean Paul Ampuero ◽  
Taras Gerya ◽  
Ylona van Dinther

Abstract. Natural fault networks are geometrically complex systems that evolve through time. The evolution of faults and their off-fault damage patterns are influenced by both dynamic earthquake ruptures and aseismic deformation in the interseismic period. To better understand each of their contributions to faulting we simulate both earthquake rupture dynamics and long-term deformation in a visco-elasto-plastic crust subjected to rate- and state-dependent friction. The continuum mechanics-based numerical model presented here includes three new features. First, a 2.5-D approximation is created to incorporate the effects of a viscoelastic lower crustal substrate below a finite depth. Second, we introduce a dynamically adaptive (slip-velocity-dependent) measure of fault width to ensure grid size convergence of fault angles for evolving faults. Third, fault localization is facilitated by plastic strain weakening of bulk rate and state friction parameters as inspired by laboratory experiments. This allows us to simulate sequences of episodic fault growth due to earthquakes and aseismic creep for the first time. Localized fault growth is simulated for four bulk rheologies ranging from persistent velocity weakening to velocity strengthening. Interestingly, in each of these bulk rheologies, faults predominantly localize and grow due to aseismic deformation. Yet, cyclic fault growth at more realistic growth rates is obtained for a bulk rheology that transitions from velocity-strengthening friction to velocity-weakening friction. Fault growth occurs under Riedel and conjugate angles and transitions towards wing cracks. Off-fault deformation, both distributed and localized, is typically formed during dynamic earthquake ruptures. Simulated off-fault deformation structures range from fan-shaped distributed deformation to localized splay faults. We observe that the fault-normal width of the outer damage zone saturates with increasing fault length due to the finite depth of the seismogenic zone. We also observe that dynamically and statically evolving stress fields from neighboring fault strands affect primary and secondary fault growth and thus that normal stress variations affect earthquake sequences. Finally, we find that the amount of off-fault deformation distinctly depends on the degree of optimality of a fault with respect to the prevailing but dynamically changing stress field. Typically, we simulate off-fault deformation on faults parallel to the loading direction. This produces a 6.5-fold higher off-fault energy dissipation than on an optimally oriented fault, which in turn has a 1.5-fold larger stress drop. The misalignment of the fault with respect to the static stress field thus facilitates off-fault deformation. These results imply that fault geometries bend, individual fault strands interact, and optimal orientations and off-fault deformation vary through space and time. With our work we establish the basis for simulations and analyses of complex evolving fault networks subject to both long-term and short-term dynamics.


2020 ◽  
Vol 46 (1) ◽  
pp. 29 ◽  
Author(s):  
Antek K. Tokarski ◽  
Piotr J. Strzelecki

Lower Cambrian Mt Currie conglomerate at Kata Tjuta bornhardts (Central Australia) bears numerous fractured clasts. Clast-cutting fractures are restricted to particular clasts, the matrix of the conglomerate is not fractured. The fractures are tectonic joints of two sets. The joints were formed due to either seismic or aseismic deformation. In the former case, the fractures may result from Early Paleozoic earthquakes.


2020 ◽  
Author(s):  
Simon Preuss ◽  
Jean Paul Ampuero ◽  
Luca Dal Zilio ◽  
Taras Gerya ◽  
Ylona van Dinther

&lt;p&gt;Natural fault networks are geometrically complex systems that evolve through time. The growth and evolution of faults and their off-fault damage pattern are influenced by both dynamic earthquake ruptures and aseismic deformation during the interseismic period. To better understand each of their contributions to faulting we simulate both earthquake rupture dynamics and long-term deformation in a visco-elasto-plastic crust subjected to rate-and-state-dependent friction [1,2]. The continuum mechanics-based numerical model presented here includes three new features. First, a 2.5-D approximation to incorporate effects of a viscoelastic lower crustal substrate below a finite depth. Second, we introduce a dynamically adaptive (slip-velocity-dependent) measure of fault width to ensure grid size convergence of fault angles for evolving faults. Third, fault localisation is facilitated by plastic strain weakening of bulk rate-and-state friction parameters as motivated by laboratory experiments. This allows us to for the first time simulate sequences of episodic fault growth due to earthquakes and aseismic creep. Localized fault growth is simulated for four bulk rheologies ranging from persistent velocity-weakening to velocity-strengthening. Yet, episodic fault growth is only obtained for a bulk rheology that transitions from velocity-strengthening friction to velocity-weakening friction. Interestingly, in each of these bulk rheologies, faults predominantly localise [LDZ1]&amp;#160;and grow in the inter-seismic period due to aseismic deformation. However, [LDZ2]&amp;#160;off-fault deformation - both distributed and localised - is typically formed during dynamic earthquake ruptures. Simulated off-fault deformation structures range from fan-shaped distributed deformation to localized Riedel splay faults and antithetic conjugate [LDZ3]&amp;#160;Riedel shear faults [LDZ4]&amp;#160;and towards wing cracks. We observe that the fault-normal width of the outer damage zone saturates with increasing fault length due to the finite depth of the seismogenic zone. We also observe that dynamically and statically evolving stress fields from neighbouring fault strands affects first and secondary fault growth. Finally, we find that the amount of off-fault deformation distinctly depends on the degree of optimality of a fault with respect to the prevailing but dynamically changing stress field. Typically, we simulate off-fault deformation on faults parallel to the loading direction. This produces a 6.5-fold higher off-fault energy dissipation than on an optimally oriented fault, which in turn has a 1.5-fold larger stress drop. The misalignment of the fault with respect to the static stress field thus facilitates off-fault deformation. These results imply that fault geometries bend [2], individual fault strands interact and that optimal orientations and off-fault deformation vary through space and time. With our work we establish the basis for simulations and analyses of complex evolving fault networks subject to both long-term and short-term dynamics. Currently, we are using this basis to simulate and explain orthogonal faulting observed in the 2019 M6.4-M7.1 Ridgecrest earthquake sequence.&lt;/p&gt;


2020 ◽  
Author(s):  
Jorge Jara ◽  
Alpay Ozdemir ◽  
Angelique Benoit ◽  
Romain Jolivet ◽  
Ziyadin Çakir ◽  
...  

&lt;p&gt;Many geodetic evidence suggest aseismic slip along active faults is more common than previously thought. Furthermore, aseismic slip during the interseismic period seems to be made of intermittent slow slip events, corresponding to episodes of loading and releasing of tectonic stress over time. However, although our capabilities of detection and location of aseismic deformation have significantly increased together with the growth in available geodetic data, the physical mechanisms governing slow slip remain unknown.&lt;/p&gt;&lt;p&gt;We explore the spatial and temporal behavior of aseismic deformation in the vicinity of the small town of Ismetpasa, located along the central section of the North Anatolian Fault (Turkey). We combine InSAR and GNSS data acquired over the last 10 years to locate and quantify aseismic slip in the subsurface. We process SAR images (ALOS and Sentinel-1) acquired from 2007 to 2018 to build time series of ground deformation and maps of ground velocity. We confirm the presence of a 100 km-long creeping section, at rates of 10-20 mm/yr. Along this section, slip is not constant and decreases over time as formerly observed over the last 60 years. Furthermore, via a detailed analysis of our geodetic time series, we detect 3 major episodes of aseismic slip between 2015 and 2018, with durations ranging from 6 months to 1 year and magnitudes between 4.6 - 5.2. These results are compared with time series obtained from a network of GNSS permanent stations we have installed in the region (17 stations, period 2016 - 2019). As a conclusion, aseismic slip along this section of the North Anatolian Fault is characterized by slow slip events rather than by a constant, steady-state aseismic slip rate. We discuss the potential implications in terms of mechanics of slow slip along the NAF.&lt;/p&gt;


2020 ◽  
Author(s):  
Simon Preuss ◽  
Jean Paul Ampuero ◽  
Taras Gerya ◽  
Ylona van Dinther

Abstract. Natural fault networks are geometrically complex systems that evolve through time. The evolution of faults and their off-fault damage pattern are influenced by both dynamic earthquake ruptures and aseismic deformation in the interseismic period. To better understand each of their contributions to faulting we simulate both earthquake rupture dynamics and long-term deformation in a visco-elasto-plastic crust subjected to rate-and-state-dependent friction. The continuum mechanics-based numerical model presented here includes three new features. First, a 2.5-D approximation to incorporate effects of a viscoelastic lower crustal substrate below a finite depth. Second, we introduce a dynamically adaptive (slip-velocity-dependent) measure of fault width to ensure grid size convergence of fault angles for evolving faults. Third, fault localization is facilitated by plastic strain weakening of bulk rate-and-state friction parameters as inspired by laboratory experiments. This allows us to for the first time simulate sequences of episodic fault growth due to earthquakes and aseismic creep. Localized fault growth is simulated for four bulk rheologies ranging from persistent velocity-weakening to velocity-strengthening. Interestingly, in each of these bulk rheologies, faults predominantly localize and grow due to aseismic deformation. Yet, cyclic fault growth at more realistic growth rates is obtained for a bulk rheology that transitions from velocity-strengthening friction to velocity-weakening friction. Fault growth occurs under Riedel and conjugate angles and transitions towards wing cracks. Off-fault deformation, both distributed and localized, is typically formed during dynamic earthquake ruptures. Simulated off-fault deformation structures range from fan-shaped distributed deformation to localized Riedel splay faults. We observe that the fault-normal width of the outer damage zone saturates with increasing fault length due to the finite depth of the seismogenic zone. We also observe that dynamically and statically evolving stress fields from neighboring fault strands affect primary and secondary fault growth and thus that normal stress variations affect earthquake sequences. Finally, we find that the amount of off-fault deformation distinctly depends on the degree of optimality of a fault with respect to the prevailing but dynamically changing stress field. Typically, we simulate off-fault deformation on faults parallel to the loading direction. This produces a 6.5-fold higher off-fault energy dissipation than on an optimally oriented fault, which in turn has a 1.5-fold larger stress drop. The misalignment of the fault with respect to the static stress field thus facilitates off-fault deformation. These results imply that fault geometries bend, individual fault strands interact and that optimal orientations and off-fault deformation vary through space and time. With our work we establish the basis for simulations and analyses of complex evolving fault networks subject to both long-term and short-term dynamics.


Sign in / Sign up

Export Citation Format

Share Document