channel widening
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Guillaume Brousse ◽  
Frédéric Liébault ◽  
Gilles Arnaud-Fassetta ◽  
Bertrand Breilh ◽  
Sandrine Tacon

2020 ◽  
Author(s):  
Nicola Surian ◽  
Andrea Brenna ◽  
Marco Borga ◽  
Marco Cavalli ◽  
Francesco Comiti ◽  
...  

<p>Although channel dynamics (i.e. channel lateral mobility, intense sediment and wood transport) are commonly dominant processes in mountain streams during high-magnitude floods, hazard assessment still mostly focuses on water flooding only. Therefore, there is a need to include river geomorphological hazard to produce reliable flood hazard mapping and define effective mitigation measures. This work deals with the “Vaia” storm that occurred in the Eastern Alps (Italy) on 27-30 October 2018. Our aims are (i) to improve the understanding of geomorphic processes in response to large floods and (ii) to improve the prediction capability of the reaches more prone to undergo intense channel dynamics (e.g. channel widening, in-channel sedimentation) during such events.</p><p>An integrated approach was deployed to study the flood event in the Cordevole river catchment (876 km<sup>2</sup>). The approach includes (i) analysis of geomorphological processes, by comparing remote sensing data acquired before and after floods and field survey (e.g. recognition of different flow types); (ii) hydrological and hydraulic analysis (collection of rainfall and streamflow data, estimation of peak discharges at multiple sites in ungauged streams, and model-based consistency check of rainfall and discharge data); (iii) landslide mapping and analysis of sediment delivery to the channel network.</p><p>Intense sediment and wood transport took place. A wide range of transport processes (i.e. debris, hyperconcentrated and water flows) was recognized in the channel network and notable channel aggradation occurred at specific location (e.g. in channelized reaches). Channel widening was the most relevant geomorphic response along the fluvial network. Width ratio (i.e. channel width after / channel width before the flood) reached up to 2.1 and 4.4, respectively in the Cordevole and in its tributaries. Locally, the valley slopes were eroded (e.g. slope retreat up to 14 m). This means that the lateral channel dynamics affected not only large portions of the valley floor (e.g. forested floodplain) but also the valley slopes, especially if made of Quaternary deposits or soft bedrock.</p><p>These results have several implications in terms of flood hazard assessment in mountain streams. Since channel widening is a major process (streams may take up the whole floodplain and, locally, erode the valley slopes), so-called “river morphodynamic corridors” need to be defined and integrated into flood hazard maps. During high-magnitude floods the sediment mobilization may take place through mechanisms (e.g. hyperconcentrated flows) that can be different from those expected for ordinary water floods. Since major channel changes commonly occur during large floods, their prediction is needed and should accompany flood hydraulic modelling to obtain reliable flood event scenarios.</p>


2020 ◽  
Author(s):  
Chao Qin ◽  
Fenli Zheng ◽  
Robert Wells

<p>Channel widening constitutes about 80% of total soil loss, especially in the presence of a plow pan which manifests a less or nonerodible soil layer. Channel bank erosion quantification is prerequisite to couple effectively the bank sediment supply system with fluvial sediment transport fluxes. The objectives of this study were to: 1) describe and evaluate methods for monitoring and data post-analysis of channel widening and 2) investigate how inflow rate, slope gradient and initial channel width affect channel widening processes in the presence of a non-erodible layer. Technology was developed to capture 5-cm spaced cross-sections along a soil flume at 3-s time intervals. Two off-the-shelf digital cameras were positioned 3-m above the soil bed and controlled by a program to trigger simultaneously and download images to the computer. Methods utilizing color differences in images and elevation differences in DEMs were applied to detect discontinuities between channel walls and the soil bed. Channel widths were calculated by differentiating the coordinates of these surface discontinuities. A volumetric method was used to calculate flow velocity with measurements of flow depths obtained from ultrasonic depth sensors. Sediment concentration was determined by manual sampling.</p><p>The results showed that different channel width calculation methods exhibited comparable outcomes and achieved satisfactory accuracy. Sediment discharge showed a significant positive linear correlation with channel widening rate, while exhibiting a 5 to 25-s time lag compared to the peak of channel widening rate. Total sediment discharge calculated by photogrammetry was 3.1% lower than that calculated by manual sampling. Flow velocity decreased with time and showed a significant negative power correlation with channel width. Sediment delivery and channel width increased with the increase of inflow rate, bed slope and the decrease of initial channel width. Exponential equations were used to predict the channel width time series. Toe scour, crack development, sidewall failure and block detachment and transport, in sequence, were the four main processes of channel widening. Basal scour arc length, tension crack length and width decreased with initial channel width and increased with time, flow discharge and bed slope. Basal scour arcs were divided into three patterns according to different shapes in comparison to the failure arcs. Sediment delivery equations based on the disaggregation of concentrated flow entrainment and mass failure were also fitted. Advantages of the described methodology include automated high spatial and temporal monitoring resolution, semi-automated data post-processing, and the potential to be generalized to large scale river/reservoir bank failure monitoring. This study provides new insight on improving channel widening measurements and prediction technology.</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 514 ◽  
Author(s):  
Andrea Mandarino ◽  
Giacomo Pepe ◽  
Michael Maerker ◽  
Andrea Cevasco ◽  
Pierluigi Brandolini

From the 1990s onwards several Italian rivers have experienced a recent phase characterized by active-channel widening and, generally, by bed-level stability or slight aggradation. However, its triggering factors and its diffusion, along with the relationship between active-channel planform dynamics and vertical adjustments, are still quite debated and only few studies are available. This research deals with the active-channel planform changes occurred along the Scrivia River floodplain reach (NW Italy) over the period 1999–2019 and it aims at investigating in detail the ongoing geomorphological processes under the river management perspective. The study is based on a quantitative multitemporal analysis of aerial photographs and satellite images performed in a GIS environment and supported by field surveys. The outcomes revealed a generalized trend of gentle active-channel widening together with widespread bank instability and several (26% of total banks) intense and localized bank retreats involving both the modern floodplain and the recent terrace. In the investigated 20-year period, the active-channel area has increased by 22.7% (from 613.6 to 753.0 ha), its mean width by 25% (from 151.5 to 189.3 m), whereas no relevant length variations have been noticed. These morphological dynamics have been more or less pronounced both at reach scale and over time. The extreme floods occurred in the investigated period can be considered the most important triggering factor of the active-channel planform changes, most probably together with an increase of the reach-scale unit stream power due to changes in the channel geometry occurred over the 20th century.


2019 ◽  
Vol 191 ◽  
pp. 306-316 ◽  
Author(s):  
Chao Qin ◽  
Robert R. Wells ◽  
Henrique G. Momm ◽  
Ximeng Xu ◽  
Glenn V. Wilson ◽  
...  

2019 ◽  
Vol 124 (1) ◽  
pp. 154-174 ◽  
Author(s):  
Thomas Croissant ◽  
Dimitri Lague ◽  
Philippe Davy

2018 ◽  
Vol 6 (4) ◽  
pp. 1115-1137 ◽  
Author(s):  
Virginia Ruiz-Villanueva ◽  
Alexandre Badoux ◽  
Dieter Rickenmann ◽  
Martin Böckli ◽  
Salome Schläfli ◽  
...  

Abstract. On 24 July 2014, an exceptionally large flood (recurrence interval ca. 150 years) caused large-scale inundations, severe overbank sedimentation, and damage to infrastructure and buildings along the Emme River (central Switzerland). Widespread lateral bank erosion occurred along the river, thereby entraining sediment and large wood (LW) from alluvial forest stands. This work analyzes the catchment response to the flood in terms of channel widening and LW recruitment and deposition, but also identifies the factors controlling these processes. We found that hydraulic forces (e.g., stream power index) or geomorphic variables (e.g., channel width, gradient, valley confinement), if considered alone, are not sufficient to explain the flood response. Instead, the spatial variability of channel widening was first driven by precipitation and secondly by geomorphic variables (e.g., channel width, gradient, confinement, and forest length). LW recruitment was mainly caused by channel widening (lateral bank erosion) and thus indirectly driven by precipitation. In contrast, LW deposition was controlled by channel morphology (mainly channel gradient and width). However, we also observed that extending the analysis to the whole upper catchment of the Emme River by including all the tributaries and not only to the most affected zones resulted in a different set of significant explanatory or correlated variables. Our findings highlight the need to continue documenting and analyzing channel widening after floods at different locations and scales for a better process understanding. The identification of controlling factors can also contribute to the identification of critical reaches, which in turn is crucial for the forecasting and design of sound river basin management strategies.


2018 ◽  
Author(s):  
Virginia Ruiz-Villanueva ◽  
Alexandre Badoux ◽  
Dieter Rickenmann ◽  
Martin Böckli ◽  
Salome Schläfli ◽  
...  

Abstract. On July 24, 2014, an exceptionally large flood (recurrence interval ca. 150 years) caused large-scale inundations, severe overbank sedimentation and damage to infrastructures and buildings along the Emme river (central Switzerland). Widespread lateral bank erosion occurred along the river, thereby entraining sediment and large wood (LW) from alluvial forest stands. This work analyses the catchment response to the flood in terms of channel widening and LW recruitment and deposition, but also identifies the factors controlling these processes. We found that hydraulic forces (e.g., stream power index) or geomorphic variables (e.g., channel width, gradient, valley confinement), if considered alone, are not sufficient to explain the flood response. Instead, spatial variability of channel widening was firstly driven by precipitation, and secondary by geomorphic variables (e.g., channel width, gradient, confinement and forest length). LW recruitment was mainly caused by channel widening (lateral bank erosion) and thus also controlled by precipitation. In contrast, LW deposition was controlled by channel morphology (mainly channel gradient and width). However, we also observed that extending the analysis to the whole upper catchment of the Emme river, including all the tributaries and not only to the most affected zones, resulted in a different set of significant explanatory or correlated variables. Our findings highlight the need to continue documenting and analysing channel response after floods at different locations and scales. Whereas this is key for a better process understanding, the identification of controlling factors can also contribute to the identification of critical reaches, which in turn is crucial for the forecasting and design of sound river basin management strategies.


Water ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 439 ◽  
Author(s):  
Eduardo Martín ◽  
Masahiro Ryo ◽  
Michael Doering ◽  
Christopher Robinson

2017 ◽  
Vol 108 ◽  
pp. 132-142 ◽  
Author(s):  
Vanesa Martínez-Fernández ◽  
Eduardo González ◽  
Juan Carlos López-Almansa ◽  
Sofía Maura González ◽  
Diego García de Jalón

Sign in / Sign up

Export Citation Format

Share Document