stall cells
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
pp. 1-21
Author(s):  
Jack Hutchings ◽  
Cesare A. Hall

Abstract Previous research into axial compressor stall has mainly focused on stall inception and methods to extend the stable operating range. This paper considers the performance of an axial compressor beyond stall and investigates how the characteristics of stall cells depend on Reynolds number. An experimental study has been conducted using a single-stage axial compressor capable of operating across the Reynolds number range of 10,000 – 100,000. Detailed unsteady measurements have been used to measure the behaviour across a range of in-stall flow coefficients. These measurements have been used to extract the stall hysteresis and to determine the size, speed, number, and spanwise extent of the stall cells. The results show that for the stalled compressor, as Reynolds number increases, the size of the minimum stable stall cell decreases. This means that a larger change in throttle area is needed to reduce the stall cell down to a size where the compressor can recover from stall. At the design Reynolds number, the number of stall cells that form transitions from one, to two, and then to four stall cells as the flow coefficient is reduced. At lower Reynolds numbers, the two-stall-cell state becomes unstable; instead, a single stall cell transitions directly into five stall cells. As the number of stall cells increases, so do the speed of the stall cells and the total size. Further reductions in the flow coefficient cause an increase in the total size and a decrease in the stall cell speed.


2021 ◽  
Author(s):  
Jack Hutchings ◽  
Cesare Hall

Abstract Previous research into axial compressor stall has mainly focused on stall inception and methods to extend the stable operating range. This paper considers the performance of an axial compressor beyond stall and investigates how the characteristics of stall cells depend on Reynolds number. An experimental study has been conducted using a single-stage axial compressor capable of operating across the Reynolds number range of 10,000–100,000. Detailed unsteady measurements have been used to measure the behaviour across a range of install flow coefficients. These measurements have been used to extract the stall hysteresis and to determine the size, speed, number, and spanwise extent of the stall cells. The results show that for the stalled compressor, as Reynolds number increases, the size of the minimum stable stall cell decreases. This means that a larger change in throttle area is needed to reduce the stall cell down to a size where the compressor can recover from stall. At Re = 100,000, the stall hysteresis is six times greater than at Re = 20,000. At the design Reynolds number, the number of stall cells that form transitions from one, to two, and then to four stall cells as the flow coefficient is reduced. At lower Reynolds numbers, the two stall cell state becomes unstable; instead, a single stall cell transitions directly into five cells. In all cases, as the number of stall cells increases, so do the speed of the stall cells and the total size. Further reductions in the flow coefficient cause an increase in the total size of the stall cells and a decrease in the stall cell speed.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6067
Author(s):  
Yaguang Heng ◽  
Bo Hu ◽  
Qifeng Jiang ◽  
Zhengwei Wang ◽  
Xiaobing Liu

A review on the rotating stall in the vaneless diffuser of centrifugal compressors is presented showing that different stall modes characterized by different numbers of cells can be detected within the diffuser even if the operating condition remains unchanged. The interaction between the inlet perturbation and the stall cells near the diffuser outlet is supposed to be the trigger of the stall mode transformation. In order to determine if the inlet perturbation will interact with the downstream stall cells, a characteristic time analysis is proposed to estimate the characteristic time of the perturbation in radial and tangential directions. An additional theoretical model which focused on the development of the vaneless diffuser rotating stall is presented to determine the propagation velocity of the cells. The comparison between the characteristic time in two directions shows that one stall mode is able to evolve into another stall mode if a critical condition is met, and the stall mode transformation is more likely to start from a mode with a higher number of cells and is more likely to occur in the diffuser with a large radius ratio. Experimental results are also employed to validate the proposed critical condition, and good agreements are obtained.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Yu Du ◽  
Hua-Shu Dou ◽  
Fuan Lu

Abstract Unstable flow in the vaned diffuser of a centrifugal compressor stage near design condition is investigated by numerical simulation. The simulation is performed with the unsteady Navier–Stokes equations and three different turbulence models. Comparisons of the characteristic curves of the stage have been carried out between simulation and experiment, and good agreement is obtained. The fluctuation signals near the interface between the impeller and the diffuser are also quantitatively analyzed from macro and micro scales under a series of mass flow conditions. The simulation results show that an abnormal counter-propagating rotating stall in the vaned diffuser is detected near design condition. The rotating stall displays that four stall cells near the shroud side of the vaned diffuser propagate slowly at a rate of approximately 0.675% of the impeller rotating frequency along the opposite direction of the impeller rotation. The propagation speed increases as the mass flow decreases. The generation and propagation mechanisms of this phenomenon are elucidated, respectively. It is found that flow separation near the diffuser shroud side is produced due to the spanwise variation of flow angles near the impeller exit, which leads to the generation of stall cells in the diffuser. The circumferential propagation of the rotating stall cells is propelled by the accumulation and release of the fluid energy from impeller passages. Further studies show that this phenomenon can be restrained by modifying the installation angle of diffuser vanes.


Author(s):  
Hossein Khaleghi ◽  
Mohammad Javad Shahriyari ◽  
Martin Heinrich

This paper reports on a theory of rotating stall in contra-rotating fans and compressors. The theory is developed from Moore’s theory. A second-order hysteresis is used in the current study for the pressure rise of the counter-rotating rows. This enables the model to predict the transient behavior of the stall cell. Comparing the experimental results with the theory shows that the modified model can predict the speed of the stall cells fairly accurately. Results show that the rotor speed ratio plays a critical role in the stall cell speed and its direction of rotation. Furthermore, the developed model makes it possible to study the effects of stagger angle and number of stall cells. The conditions under which pure rotating stall can occur in contra-rotating fans are also discussed in this paper. It is shown that the stall cells merge to form a single cell before a stable fully-developed rotating stall is established.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1251
Author(s):  
Qian Zhang ◽  
Liang Zhang ◽  
Qiuhong Huo ◽  
Lei Zhang

Two types of stall patterns in the centrifugal compressor with a wide vaneless diffuser were numerically studied in this paper. We carried out kinds of three-dimensional numerical simulations of the instability process in wide vaneless diffusers with different radius ratios. The results show that there are two kinds of stall patterns in wide vaneless diffusers with different radius ratios. For a short diffuser with a radius ratio of 1.5, the speed of the propagation of stalled cells is relatively high, and the propagation speed and frequency of stall cells do not change with the decrease in the flow rate. For a long diffuser with a radius ratio of 1.8, the propagation velocity of stall cells is smaller to the one in the short diffuser, and increases with the decrease in flow rate. For wide vaneless diffusers with different radius ratios, the main factor causing stall is the outlet reflux. Reducing the radius ratio of the wide vaneless diffuser has an important influence on the stability of the centrifugal compressor.


Author(s):  
MP Manas ◽  
AM Pradeep

Contra-rotating fan is a concept that can possibly replace the present-day conventional fans due to its several aerodynamic advantages. It has the potential to improve the stability limit and can achieve a higher pressure ratio per stage. One of the advantages of a contra-rotating fan is its capability to operate both the rotors at different speeds. In the present study, experiments are carried out at different speed combinations of the rotors and the stall inception phenomenon is captured using high-response unsteady pressure sensors placed on the casing upstream of the leading edge of rotor-1. The unsteady pressure data are investigated using wavelet and Fourier analysis techniques. It is observed that the mechanism of stall inception is different for different speed combinations. The pre-stall disturbances fall in different frequency ranges for different speed combinations. For the range of speed combinations investigated, the frequency of appearance of stall cells of rotor-1 does not depend on the speed of rotor-2. A higher speed of rotation of rotor-1 leads to a higher frequency of appearance of stall cells and a lower speed of rotation of rotor-1 leads to a lower frequency of appearance of stall cells. For all the speed combinations, there is a range of frequency where no disturbance is observed and this range is termed as the ‘no-disturbance zone’. Disturbances are observed at lower frequencies and at frequencies close to the blade passing frequency. In order to understand the flow physics in detail, computational analysis is carried out for different speed combinations of the rotors. For a higher speed of rotor-2, it is observed that the suction effect of rotor-2 is significant enough to pull the tip-leakage flow towards the axial direction. Thus, the suction effect of rotor-2 plays a significant role in determining the stall of the stage.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4995 ◽  
Author(s):  
Xinwei Zhao ◽  
Qiang Zhou ◽  
Shuhua Yang ◽  
Hongkun Li

Rotating stall limits the operating range and stability of the centrifugal compressor and has a significant impact on the lifetime of the impeller blade. This paper investigates the relationship between stall pressure wave and its induced non-synchronous blade vibration, which will be meaningful for stall resonance avoidance at the early design phase. A rotating disc under a time-space varying load condition is first modeled to understand the physics behind stall-induced vibration. Then, experimental work is conducted to verify the model and reveal the mechanism of stall cells evolution process within flow passage and how blade vibrates when suffering such aerodynamic load. The casing mounted pressure sensors are used to capture the low-frequency pressure wave. Strain gauges and tip timing sensors are utilized to monitor the blade vibration. Based on circumferentially distributed pressure sensors and stall parameters identification method, a five stall cells mode is found in this compressor test rig and successfully correlates with the blade non-synchronous vibration. Furthermore, with the help of tip timing measurement, all blades vibration is also evaluated under different operating mass flow rate. Analysis results verify that the proposed model can show the blade forced vibration under stall flow condition. The overall approach presented in this paper is also important for stall vibration and resonance free design with effective experimental verification.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1116 ◽  
Author(s):  
Peijian Zhou ◽  
Jiacheng Dai ◽  
Chaoshou Yan ◽  
Shuihua Zheng ◽  
Changliang Ye ◽  
...  

Rotating stall is an unsteady flow phenomenon, which always leads to instability and efficiency degradation. In order to reveal pressure fluctuations in the impeller of centrifugal pump induced by stall cells, the flow structures in a volute-type centrifugal pump were calculated using Large Eddy Simulation (LES) method. The predicted results of the numerical model were compared with experimental flow-head curve. The simulation results were in good agreement with the experimental results. The stall phenomenon occurred when the flow rate dropped to 70% of design flow rate. Three stall cells located at the entrance of passages could be observed, which remained stationary relative to the rotating impeller. With the decrease of flow rate, the area occupied by stall cells gradually increased. The peak value of pressure fluctuation at 25% of design flow rate is obviously larger than that at 50% of design flow rate. For the unstalled or stalled passage, the impeller-volute interaction played a leading role in the pressure fluctuations of the impeller. For the stalled passage, the amplitude of the low frequency induced by stall cell is relatively insignificant.


Author(s):  
Ce Yang ◽  
Wenli Wang ◽  
Hanzhi Zhang ◽  
Yanzhao Li ◽  
Ding Tong ◽  
...  

Abstract In a centrifugal compressor with a volute, the internal flow field is circumferentially nonuniform owing to the asymmetric structure of the volute. Currently, the mechanisms by which the volute influences the stall inception circumferential position and the stall process in a transonic centrifugal compressor are not clear. In this study, the stall process in the centrifugal compressor with a volute is investigated under transonic inlet conditions. Obtained by experimental and simulation results, the static pressure distributions around the casing wall are compared with each other. Thereafter, an unsteady simulation is conducted on the stall process under transonic inlet conditions. By analyzing the stall cell evolution pattern at the impeller inlet, the stall process can be divided into three stages: stall onset, stall development, and stall maturation. The spike-type stall inceptions occur twice at the tip in the circumferential 135° position of the impeller inlet. This circumferential position is also the affected position of the high static pressure region induced by the volute tongue. Because of the circumferentially nonuniform flow field, there is a stall cell decay zone and a stall cell formation/growth zone at the impeller inlet. For the compressor under study, the approximate circumferential range of 135° to 270° is the decay zone, and the circumferential range of 270° to 360° is the formation/growth zone. The stall inception cannot occur in the decay zone. However, the stall cells can pass through the decay zone when the stall cell size is large enough. The first stall inception cannot propagate circumferentially, while the second one can. The propagation speed of stall cells in the circumferential direction is at approximately 70% of the rotational speed of impeller.


Sign in / Sign up

Export Citation Format

Share Document