nonlinear channels
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Stephen Z. Pinter

Two major issues associated with fiber-wireless technology are the nonlinear distortion of the optical link and the multipath dispersion of the wireless channel. In order to limit the effects of these distortions, estimation, and subsequently equalization of the concatenated fiber-wireless channel needs to be done. This thesis addresses three scenarios in this regard, they are: uplink estimation using pseudonoise (PN) sequences, downlink estimation using Walsh codes, and uplink equalization using a decision feedback equalizer (DFE) and series reversion, all in the presence of both wireless and optical channel noise. The training sequences used in the identification are practically feasible. These training sequences have white noise-like properties which effectively decouples the identification of the linear and nonlinear channels. Correlation analysis is then applied to identify both systems. Furthermore, we propose an algorithm to mitigate the adverse effect of multiple access interference (MAI). Numerical evaluations show a good estimation of both the linear and nonlinear systems with 10 users for the uplink and 54 users for the downlink, both with a signal-to-noise ratio (SNR) of 25 dB. Chip error rate (CER) simulations show that the proposed MAI mitigation algorithm leaves only small residual MAI.


2021 ◽  
Author(s):  
Stephen Z. Pinter

Two major issues associated with fiber-wireless technology are the nonlinear distortion of the optical link and the multipath dispersion of the wireless channel. In order to limit the effects of these distortions, estimation, and subsequently equalization of the concatenated fiber-wireless channel needs to be done. This thesis addresses three scenarios in this regard, they are: uplink estimation using pseudonoise (PN) sequences, downlink estimation using Walsh codes, and uplink equalization using a decision feedback equalizer (DFE) and series reversion, all in the presence of both wireless and optical channel noise. The training sequences used in the identification are practically feasible. These training sequences have white noise-like properties which effectively decouples the identification of the linear and nonlinear channels. Correlation analysis is then applied to identify both systems. Furthermore, we propose an algorithm to mitigate the adverse effect of multiple access interference (MAI). Numerical evaluations show a good estimation of both the linear and nonlinear systems with 10 users for the uplink and 54 users for the downlink, both with a signal-to-noise ratio (SNR) of 25 dB. Chip error rate (CER) simulations show that the proposed MAI mitigation algorithm leaves only small residual MAI.


2021 ◽  
Vol 60 (1) ◽  
pp. 207-215
Author(s):  
Songsong Lian ◽  
Tao Meng ◽  
Hongqi Song ◽  
Zhongjia Wang ◽  
Jiabin Li

Abstract The relationship between percolation mechanism and pore characteristics for recycled permeable bricks with different porosities is investigated in this study based on X-ray computed tomography (X-CT). Permeability coefficients are measured and some characteristics including size, amount, and distribution of the pore are analysed. The results show that the effective porosity and permeability coefficient of the recycled permeable bricks exhibit a linear relationship first and then a quadratic curve relationship, where the critical effective porosity is 12%. Meanwhile, we discovered that nonlinear channels in permeable bricks are larger and fewer compared with linear percolation channels, regardless of whether the percolation stage is linear or nonlinear. Additionally, when the area and number ratios of the linear and nonlinear percolation channels reached 80% and 10%, respectively, the overall percolation state of the permeable bricks changed from linear to nonlinear percolation. This research is helpful to improve the mechanical and percolation properties of recycled concrete bricks and promote the application of porous permeable material.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chun Kwan Chen ◽  
Bee Luan Khoo

Abstract Particle separation techniques play an important role in biomedical research. Inertial focusing based microfluidics using nonlinear channels is one of the promising label-free technologies for biological applications. The particle separation is achieved as a result of the combination of inertial lift force (FL) and Dean drag force (FD). Although the mathematical expressions of FL and FD have been well derived in prior studies, they are still complicated, which limits their popularity in practice. Recent studies modified these expressions through experiments and proposed a threshold model, which assumes that only particles larger than the threshold will be well focused. Although this threshold model has been used in recent studies, two varying versions of the threshold model (TM1 and TM2) prevents standardisation in practice. In addition, both models were developed with regular low-density particles and may not be applicable to samples with higher density or samples with irregular shapes. Here, we evaluated the threshold models with samples of different densities. Based on these evaluations, we derived a modified model (TM4), which additionally considers the factor of particle density to improve the accuracy of existing models. Our results demonstrated that TM4 could more reliably predict the sorting efficiency of samples within a wider density range.


Author(s):  
Maximilian Schaedler ◽  
Stefano Calabrò ◽  
Fabio Pittalà ◽  
Christian Bluemm ◽  
Maxim Kuschnerov ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 52-65
Author(s):  
Katyayani Kashyap ◽  
Tarun Kumar Sharma

Generation of an efficient spreading code in Spread Spectrum Modulation (SSM) is always challenging due to considerations like optimum sequence length, physical layout of registers and power requirements. In this article, a design of a dynamic chaotic spreading sequence for application in a Direct Sequence Spread Spectrum (DS SS) based system with the considerations of wireless channels (Rayleigh and Rician) are presented. Generation of dynamic chaotic sequence for application in linear and nonlinear channels is done and a comparison with static chaotic sequence is presented. Evaluation of performance is done in terms of bit error rate (BER), computational time, mutual information and signal power for faded channel taking into considerations of different modulation schemes, which finally dictates the efficiency of the generated code. The performance of the generated dynamic logistic map-based sequence is compared to that obtained from Gold code under equivalent conditions.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 68233-68241
Author(s):  
Xiaojie Wen ◽  
Weijie Yuan ◽  
Dewei Yang ◽  
Nan Wu ◽  
Jingming Kuang

Sign in / Sign up

Export Citation Format

Share Document