organophosphorus acid anhydrolase
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1365
Author(s):  
Marek Matula ◽  
Tomas Kucera ◽  
Ondrej Soukup ◽  
Jaroslav Pejchal

The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents. Some of these variants have become part of commercially available decontamination mixtures.


2020 ◽  
Vol 105 (1) ◽  
pp. 389-400
Author(s):  
Monika Jain ◽  
Priyanka Yadav ◽  
Bhavana Joshi ◽  
Abhijeet Joshi ◽  
Prashant Kodgire

2016 ◽  
Author(s):  
Mark A. Guelta ◽  
Steven P. Harvey ◽  
Melissa M. Dixon ◽  
Richard Baldwin

Author(s):  
Andrea Štěpánková ◽  
Jarmila Dušková ◽  
Tereza Skálová ◽  
Jindřich Hašek ◽  
Tomáš Koval' ◽  
...  

The bacterial enzyme organophosphorus acid anhydrolase (OPAA) is able to catalyze the hydrolysis of both proline dipeptides (Xaa-Pro) and several types of organophosphate (OP) compounds. The full three-dimensional structure of the manganese-dependent OPAA enzyme is presented for the first time. This enzyme, which was originally isolated from the marine bacteriumAlteromonas macleodii, was prepared recombinantly inEscherichia coli. The crystal structure was determined at 1.8 Å resolution in space groupC2, with unit-cell parametersa= 133.8,b= 49.2,c= 97.3 Å, β = 125.0°. The enzyme forms dimers and their existence in solution was confirmed by dynamic light scattering and size-exclusion chromatography. The enzyme shares the pita-bread fold of its C-terminal domain with related prolidases. The binuclear manganese centre is located in the active site within the pita-bread domain. Moreover, an Ni2+ion from purification was localized according to anomalous signal. This study presents the full structure of this enzyme with complete surroundings of the active site and provides a critical analysis of its relationship to prolidases.


2011 ◽  
Vol 47 (25) ◽  
pp. 7242 ◽  
Author(s):  
Liang Zhao ◽  
Kerim M. Gattás-Asfura ◽  
Jianmin Xu ◽  
Ravi A. Patel ◽  
Anup Dadlani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document